Mineral Occurrences in the Emergency Withdrawal Area and Adjacent Lands in the Great Salt Lake Desert

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Occurrences in the Emergency Withdrawal Area and Adjacent Lands in the Great Salt Lake Desert UTAH GEOLOGICAL AND MINERAL SURVEY REPORT OF INVESTIGATION NO. 200 MINERAL OCCURRENCES IN THE EMERGENCY WITHDRAWAL AREA AND ADJACENT LANDS IN THE GREAT SALT LAKE DESERT by J. Wallace Gwynn Keith Clem Mike Shubat Bryce Tripp Paul Sturm September 1985 I. Introduction - This mineral report was prepared to fulfill the requirements of PL 94-579 Sec. 204 (c)(2) for the emergency withdrawal of a portion of the Great Salt Lake Desert. This report covers the actual proposed withdrawal area and the surrounding region (fig. 1 and 2) from township 2S to BN and from range 8W to IBW. A legal description of the actual area subject to inundation is contained in a seperate land report. Geologic data was compiled from published and unpublished Utah Geological and Mineral Survey material and other outside sources. Hellmut H. Doelling's 1980 publication, "Geology and mineral resources of Box Elder County, Utah" and Lehi Hintze's 1973 book "Geologic history of Utah" are probably the best general references for this area. No field work was deemed necessary in light of the availability of adequate geological information. II. General Geology Mountain ranges adjacent to areas affected by the West Desert pumping project are dominantly comprised of Paleozoic to lower Mesozoic carbonate rocks (Fig. 3). Rocks of Cambrian through Devonian age represent shallow marine miogeoclinal deposits and are composed of limestone and dolomite with minor sandstone and shale. The thickness of the miogeoclinal rocks ranges from 15,000 to 16,000 feet (Hintze, 1973). Mississippian to lowermost Mesozoic rocks were largely deposited in the Oquirrh Basin and are comprised of interbedded limestone, sandstone, and shale. Thickness of these rocks ranges from 0 to 26,000 feet due to erosion, nondeposition, and faulting (Hintze, 1973). Establishment of the Oquirrh Study Area Fig. I West Desert Pumping Project Emergency Withdrawal Cub Island Gunnison J Island 1 N, 4 FI.1! z < o 8 ~E3::EH3:::EHa:::JH3::JRe::l0=======31O========210~======~3i: 0=======40:3 Miles IOEHaHDH:DHS::EHti?=====3:lp=====2JPE====~3[p=====4EP~===35.o Kilometers Proposed Dikes Approximate Area Enclosed by 4218' Contour (area inundated) Figure 2- Proposed Dikes and Area of Inundation Great S a I t 7N Lake 6N N ~ 4N N 3N 17W 16W 15W (geol og y mod i fied f rom Hintze 1 L.F., 1980) Quaternary mud and salt flots a 5 IOmi I I I I ..1.-'.. I (scale: I: 500, 000) Quaternary alluvium, colluvium, and marsh sediments Quaternary Lake Bonneville sediments T-ertiary basalt Tertiary Solt Lake Group r-----. ~~J Jurassic intrusive rocks Paleozoic and Mesozoic (sparse) rocks • Fig. 3 - Generalized Geo log'Y Basin and disruption of miogeoclinal conditions is related to the onset of orogenic activity in the Cordillera. From late Triassic to late cretaceous time, the area of concern experienced deformation and uplift of the Sevier orogeny. Folding, uplift, and thrust faulting of Paleozoic rocks during this event resulted in crustal shortening of 40 to 60. miles across the Sevier Belt (Hintze, 1973). Thrust faults·of this episode are such that all pre-Cenozoic'rocks in western Utah are considered to be allochthonous. Several Jurassic-aged quartz monzonite stocks were intruded during the Sevier orogeny. One is located in the northern Newfoundland Mountains and the rest in the Crater Island Mountains (Doel1ing, 1980). From Miocene time to present, during which time the Basin and Range province was established, the area underwent extensional tectonics, broad uplift, and local volcanism. Tertiary ash-flow tuff volcanism was conspicuously absent from the area. Basin and Range block faulting produced the typically north-trending ranges separated by broad alluvium-filled valleys. The extensive mud flats occurring in the West Desert are presumably underlain by up to 15,000 feet of alluvium. Quaternary deposits include the extensive Lake Bonneville Group. Shoreline gravel deposits of Lake Bonneville the mantle mountain ranges in the study area. Lacustrine deposits consist of silt, sand, and clay and comprise the present mud flats. Interstitial brines are present in the subsurface. III. Known Mineral Deposits A. Subsurface Brines - The Great Salt Lake Desert contains vast quantities of subsurface brines within the three principal aquifers These are referred to by Stephens (1974) as the shallow brine aquifer, the alluvial-fan aquifer, and the valley-fill aquifer. Within the northern Great Salt Lake Desert, the shallow brine aquifer covers some 1650 square miles, and occupies the upper 20 to 25 feet of lakebed clays and silts. Brine movement through this upper portion of t~e sediments is believed by Turk (1969) to occur through a network of open jOints. The alluvial-fan aquifer, which contains brackish water, is described by Stephens (1974) as follows: "an 'apron' of unconsolidated alluvium borders much of the floor of the northern Great Salt Lake Desert •••• These surficial alluvial deposits, together with underlying unconsolidated to well-cemented older alluvium ••• that was also deposited as fans or aprons along the mountain flanks, comprise an aquifer referred to herein as the 'alluvial fan' aquifer." Stephens (1974) describes the valley-fill, brine-bearing aquifer as follows: "The largest ground-water reservoir in the northern Great Salt Lake Desert is in unconsolidated to partly consolidated valley-fill •••• The total thickness of valley-fill ranges from zero where older Paleozoic rock crops out .•• to 1,385 feet at Lemay ••• and at least 1,644 feet in the Bonneville Salt Flats area •••• " "Volcanic rocks underlying the unconsolidated sediment (Heylmun, 1965, p.28-29) may also constitute a part of the major ground-water reservoir •••• If those rocks are included, the total thickness of the reservoir rocks may be more than 5000 feet throughout much of the area ... " Near Wendover, 16 to 20 miles west of the West Desert impoundment area (or that area north of the Bonneville Dike)(fig. 4), Kaiser Aluminum and Chemical Corporation produces potash (KCl) from the subsurface brines. The majority of Kaiser's feed brines are collected from the shallow aquifer through a network of open ditches, with a minor amount being pumped from the deep valley-fill aquifer. Through solar evaporation of these low-sulfate desert brines, sylvinite, a mixture of halite and sylvite is produced. Bingham (1980) indicates that the processing of the sylvinite are produces some 85,000 short tons of potash products per year. A magnesium chloride bittern brine is also produced. No commercial use or development of the subsurface brines has ever occurred within the West Desert Impoundment area. B. Metallic Minerals- Nearly all of the impacts on metallic mineral deposits from the West Desert Pumping project have been mitigated by providing for access to the Newfoundland Mountains. No metallic resources are known below the 4218-foot elevation that delineates the area inundated but two areas would have their access affected: the Newfoundland Mountains and a small knoll in T. 6 N., R. 12 W. (Black Magic Claims). Access problems with the Newfoundlands were resolved by providing for a bridge across a canal. No plan is known of for mitigating impact on the Black Magic Claims. The four mining districts occurring in the vicinity of the west Desert Pumping project are the Newfoundland, Crater Island, Silver Island, and Lakeside districts (fig. 5) (Doelling and Tooker, 1983). Commodities present within the four districts include copper, silver, lead, zinc, tungsten, molybdenum, Cub Island Cunnison ~ Island Brine--'.-----, 'N • G J '---.,; ~ ........It· • .::::~ ;:..... It ~t;~ ~~;~f;~t?(: }?t~:~;;:}r!. ~:)Jr{X~~1 ??~~:;:;S~i~· <·i/:t:~j~(J • Lu 40 'E£3::JHS::=t=1E:C:ER:CRR:::J0E======310=======2:E0~=====~3O iO======:::::i Miles IOSH:JH3:JH3:EH3:ES:cEI ====I3:p====2:Ep§::==~33:p=====4EP===3510 Kilometers Proposed Dikes Brine Chemical composition of brines on a dry weight percent basis Area K Na Mg C1 504 . JPS_ Jw_t~/9J)_ A 2.31 35.13 1.30 59.58 1.64 12.89/ 8 1.82 33.68 2.68 57.72 4.06 .17.08/ C 1.19 32.09 4.13 51.41 11.14 4.17/ 0 0.86 34.82 2.28 55.88 6.11 8.66/ E 1.95 33.81 0.76 61.59 1.87 /227.95 F 1.18 35.28 1.17 59.21 2.51 /162.15 G 2.47 31.65 3.30 55.35 7.04 /180-34C Figure 4 - Map of West Desert Containment Area showing shallow aquifer, 4218 foot contour, and sample areas keyed to average brine analyses. gold, barite, clay, and iron. Past production from all districts has been minor. All districts lie well north of the Oquirrh-Uinta mineral belt. Mineral deposits in the Newfoundland Mountains and surrounding areas will be briefly discussed. -1. Newfoundland Mountains- Three subdivisions of the Newfoundland district have been identified (Doelling, 1980) and are shown on figure 5. Additional prospects occur throughout the Newfoundland Mountains but are of small extent. Commodities present in the district include copper, gold, silver, lead, tungsten, and molybdenum. Most deposits are directly or indirectly associated with the Newfoundland stock and occur along the periphery of the intrusion. Mining activity in the district has' be'en intermittent. Mineralization in the Copper Flat area (northernmost end of the range, figure 5) is restricted to a fault zone, from 6 inches to 7 feet wide, striking N 60 Wand dipping 15 to 40 NE. Copper and molybdenum mineralization is reported. Copper minerals include malachite, azurite, chrysocolla, chalcanthite, chalcopyrite, and bornite. Thin, altered, igneous dikes are present and the hosting quartzite is locally silicified. Mineralization in the stone House area (southernmost location in the Newfoundland district shown on figure 5) consists of copper and possible lead and silver.
Recommended publications
  • Division of Mines and Mining
    STATE OF WASHINGTON ARTHUR B. LANGLIE, GOVERNOR Department of Conservation and Development JOHN BROOKE FINK, Director THIRD BIENNIAL REPORT of the DIVISION OF MINES AND MINING For the Period Commencing January 1, 1939 and Ending January 1, 1941 By THOMAS B. HILL, SUPERVISOR J . w. MELROSE, GEOLOGIST OLYMPIA STATE PRI NTINC PLANT DIVISION OF MINES AND MINING Hon. John Brooke Fink, Director, Department of Conservation and Development, Olympia, Washington. Sir: I have the honor to submit herewith the third biennial report of the Division of Mines and Mining, covering the period from January l, 1939, to January 1, 1941. Respectfully, THOMAS B. HILL, Supervisor. DIVISION OF MINES AND MINING THOMAS B. HILL Supervisor SUMMARY OF MINERAL INFORMATION The present widespread interest in the mineral resources of Washington had its beginning in 1933 when the Director of the Department of Conserva­ tion and Devlopment devoted a substantial part of an allocation of $80,000 from Washington Emergency Relief Administration to mineral investigations. Two years later, the Division of Mines and Mining was created, and has continued the investigations, the work of compiling information and promoting the development of the mineral resources. Extensive information had been developed on the mineral resources of the State in the previous twenty-five years, largely through the Washington Geological Survey and the Division of Geology. This information had been published in some 50 or more bulletins and 1·eports, about half of which are now out of print. The information, while extensive, was scattered and in many instances fragmentary. The result of the work begun by the Department in 1933, and continued by this Division since 1935, is that now information is available on all the known mineral occurrences of the State.
    [Show full text]
  • Shift in Global Tantalum Mine Production, 2000–2014
    Shift in Global Tantalum Mine Production, 2000–2014 Tantalum has a unique set of tantalum from mine production is econom- (defined as sharing a border with the properties that make it useful in a ically viable in only a few countries. DRC) (U.S. Securities and Exchange number of diverse applications. The Although developed countries Commission, 2012; Chasan, 2015; ability of the metal to store and release dominated tantalum mine production U.S. Department of State, 2015). electrical energy makes it ideally suited in the early 2000s, production today The DRC, Rwanda, and surrounding for use in certain types of capacitors is dominated by countries in the Great countries are not globally significant that are widely used in modern elec- Lakes Region of Africa (figs. 1 and 2). sources of tin, tungsten, or gold, tronics. Approximately 60 percent of There is concern that the sales of accounting for only about 2 percent global tantalum consumption is in the minerals, including columbite-tantalite or of the mined world supply for each of electronics industry (Papp, 2015). The “coltan,” a mineral from which tantalum these elements. The region has, however, ductility and corrosion resistance of the is derived, have helped finance rebel evolved to become the world’s largest metal lends itself to application in the groups accused of violating human rights producer of mined tantalum. chemical processing industry, and its high as part of the continuing armed conflict A further complication of the melting point and high strength reten- in the Democratic Republic of the Congo production of tantalum stems from the tion at elevated temperatures make it an (DRC) and neighboring countries.
    [Show full text]
  • New Enterprise Project
    NI 43-101 Technical Report Assessing the Au, Cu, Porphyry Potential of the New Enterprise Project Maynard Mining District, Kingman, Arizona, United States of America FOR Pershing Resources Company Inc. 200 South Virginia Street, 8th Floor Reno, NV 89501 AUTHORS: Edward Walker, Ph.D., P.Geo. Jim Renaud, Ph.D., P.Geo. Natalie Pietrzak-Renaud, Ph.D., P.Geo. Effective Date : June 18, 2018 Signature Date: May 22, 2018 Table of Contents Item 1: Summary .......................................................................................................................... 7 Item 2: Introduction.................................................................................................................... 12 Item 3: Reliance on Other Experts .............................................................................................. 14 Item 4: Property Description and Location ................................................................................ 14 Item 5: Accessibility, Climate, Local Resources, Infrastructure, and Physiography ................... 27 Location and Access ............................................................................................................... 27 Climate and Vegetation .......................................................................................................... 27 Local Resources and Infrastructure ........................................................................................ 27 Physiography .........................................................................................................................
    [Show full text]
  • Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium
    Appendix C – Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium Mine Expansion – 2018 Mining Proposal (GHD 2018) and Talison Leaching Study – Stage 2 AMD Testing Results (GHD 2019) GHD | Report for Talison Lithium Australia Pty Ltd – Greenbushes Mine Expansion – Works Approval 1, 6136944 TALISON LITHIUM Talison Lithium Australia Pty Ltd Assessment of acid and metalliferous drainage Greenbushes Lithium Mine Expansion - 2018 Mining Proposal July 2018 WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION Executive summary GHD was engaged by Talison Lithium Australia Pty Ltd to undertake an Acid and Metalliferous Drainage assessment (AMD), to demonstrate the leaching potential of the future tailings and waste rock due to the proposed expansion of the mine - the Greenbushes Lithium Mine, located at Greenbushes Western Australia. The scope of works for this AMD study included the collation and geo-statistical analysis of Talison’s mineralogical assay data base - for the proposed waste rock and ore, and a review of the body of information relating to previous AMD assessments of the previously mined waste rock and existing tailings facilities. Given the continuity of mineralogy between the previously mined material and the proposed mined material (waste rock and ore), the findings of previous AMD assessments, relating to the existing waste rock and tailings facilities, are considered reliable indicators of the future AMD risk. This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the Report. Acidic drainage risk The risk that the tailings (derived from ore processing) will produce adverse quantities of acid is considered low, given the low sulphur content (average 0.04%).
    [Show full text]
  • Estimation of Capital Costs for Establishing Coal Mines in South Africa
    ESTIMATION OF CAPITAL COSTS FOR ESTABLISHING COAL MINES IN SOUTH AFRICA Moshe Mohutsiwa A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2015 DECLARATION I declare that this research report is my own unaided work. It is being submitted to the degree of Master of Science to the University of the Witwatersrand, Johannesburg. (Signature of Candidate) day of year ii ABSTRACT Coal is one of the most abundant mineral resources in South Africa and it is predominantly used in electricity generation in the country. Of all the mineral resources in South Africa, development of coal resources attracted most of the financial investment between 2010 and 2013. Development of mining projects requires estimation of capital and operating costs in the early stages of the project’s life. Estimation of costs is an essential exercise that assists on deciding the future of mining projects. Despite all the investment in the South African coal mining sector, there is still little consistency in unit capital costs invested/required to develop coal mining projects. Lack of research within the area of coal mining projects’ costs is attributable to a lack of publicly available information. Research in this area will enable investors and operators in the coal mining sector to be able to assess financial viability early in the project life. This study reviewed coal mining projects across the world, looking at publicly available capital costs. The study further recognised similarities between the South African and Indian coal mining sectors thereby enabling the research to leverage data from the Indian coal mining sector to estimate capital costs in South Africa.
    [Show full text]
  • Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection Public Disclosure Authorized
    Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection Public Disclosure Authorized WORKING PAPer 4 | Mining Kirsten Hund Carole Megevand with Edilene Pereira Gomes Public Disclosure Authorized Marta Miranda Erik W. Reed Public Disclosure Authorized Public Disclosure Authorized APRIL 2013 Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection WORKING PAPer 4 | Mining Kirsten Hund Carole Megevand with Edilene Pereira Gomes Marta Miranda Erik Reed APRIL 2013 Working Paper 4: Mining iii CONTENTS ACRONYMS ....................................................................................................................................................vii AcknoWLedgments .................................................................................................................................ix IntrodUctIon .............................................................................................................................................xi Chapter 1. MIneraL WeaLth IN the Congo BasIN: LargeLY Untapped.........................1 Geology and Associated Mineral Resources ................................................................................................1 Mining Sector in the Congo Basin ....................................................................................................................3 Types of Mining Operations ........................................................................................................................4
    [Show full text]
  • Gold-Bearing Polymetallic Veins and Replacement Deposits Part I
    Gold-bearing Polymetallic Veins and Replacement Deposits Part I U.S. GEOLOGICAL SURVEY BULLETIN 1857-C AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from WASHINGTON, D.C.-Main Interior Bldg., 2600 corridor, 18th and CSts.,NW.
    [Show full text]
  • An Outline of Mining Law
    CHAPMAN TRIPP LEGAL RESEARCH FOUNDATION INC. AN OUTLINE OF MINING LAW by Dr. Kenneth Palmer LL.M. Harvard, Sjd Virginia, Dip.T.P. Paper presented at Auckland Law Faculty Seminar Series 1982 at University of Auckland I SSN 0111 - 3410 ISBN 0-908581-25-4 -28- AN OUTLINE OF MINING LAW 35 The Commissioner for the Environment could be called as a witness by a party: Amoco case, supra n 3. Introduction 36 See Amoco case, supra n 3, at D 928. Twelve years ago the Legal Research Foundation sponsored the 37 Me.adow Mushrooms Ltd v Paparua County Council (1980) 8 NZTPA 76. Australasian Mining Symposium held at the University of Auckland. During the proceedings, seven distinguished speakers covered such 38 As to the legitimate expectation doctrine, see Smitty's Industries Ltd v Attorney-General [1980] 1 NZLR 355, 367-370 (proper reasons to be topics as Canadian trends in mining and New Zealand comparisons, given for declining application). an era of change in New Zealand mining law having regard to the 39 Mining Act 1971, ss 103D, 103E. The variation power overcomes doubts pending Mining Bill 1970 (which became the Mining Act 1971), deep- raised in Kopara case [1982] NZ Recent Law 115, 118 (issue 7 - sea mining, engineering aspects of mining, conservation in mining deletion of conditions preventing raising of finance upheld). l in America, financial aspects of mining, and taxation questions. 40 Ibid, ss 116-125, 131-134, 138-151. As to default, cf Bell v Gibson The present paper is on a much more modest scale, being limited to [1934] NZLR s 207.
    [Show full text]
  • Carpenter, R.M., Pandolfi, J.M., P.M. Sheehan. 1986. the Late Ordovian and Silurian of the Eastern Great
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter John M. Pandolfi Peter M. Sheehan MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter, Department of Geology, Conoco Inc., 202 Rue Iberville, Lafayette, LA 70508; John M. Pandolfi, Department of Geology, University of California, Davis, California, 95616; Peter M. Sheehan, Department of Geology, Milwaukee Public Museum, 800W. Wells St., Milwaukee, Wisconsin 53233 ISBN 0-89326-122-X © 1986 Milwaukee Public Museum Abstract Two east-west transects examined in western Utah and eastern Nevada preserve Upper Ordovician-Lower Silurian lithofacies along a carbonate ramp transitional between a shelf and basin. Previous investigators have reconstructed this margin as a classic carbonate shelf with an abrupt, linear margin between shelf and slope. However, lithofacies change gradually between shelf and slope and are better explained by a carbonate ramp model. Intertidal and shallow subtidal dolomites are present to the east, with progressively deeper water limestones with increasing fine grained terrigenous content toward the west. Shelf edge reefs or shallow water carbonate margin buildups are absent. Latest Ordovician glacio-eustatic decline in sea level produced a period ofsubaerial exposure in the shallow eastern region. However, deposition continued deeper on the ramp, where shallow-water, cross laminated, massive dolomites were deposited during the glacio-eustatic regression. The carbonate ramp pattern was disrupted in the Middle or early part of the Late Llandovery, when an abrupt margin was established by listric growth faulting.
    [Show full text]
  • D. Final Report Vol. Ii Regional Heat Flow and Geochemical
    DAVID- D. FINAL REPORT VOL. II REGIONAL HEAT FLOW AND GEOCHEMICAL STUDIES IN SOUTHWEST UTAH Contract: 14-08-0001-G-341 Agency: U.S. Geological Survey Period of Work: June 21, 1976 through August 31, 1978 Grantee: Department of Geology and Geophysics University of Utah Princiapl Investigator: David S. Chapman Co-Investigators: David D. Blackwell William T. Parry Willi am R. Sill Stanley H. Ward James A. Whelan FINAL REPORT VOL II REGIONAL HEAT FLOH AND GEOCHEMICAL STUDIES Irl SOUTHHEST UTft.H Contract: 14-08-0001-G-341 Agency: U.S. Geological Survey Period of work: June 21 7 1976 through August 31, 1978 Grantee: Department of Geology and Geophysics The University of Utah Principal Investigator: David S. Chapman Co Investigators: David 0. Blackwell ~~ i 11 i am T• Parry Hilliam R. Sill Stanley H. Ward James A. ~Jhelan CONTENTS Page ABSTRACT. • • 1 INTRODUCTION. • . 2 HEAT FLOW DATA: SUMMARY 2 HEAT FLOH PROVINCES Arm SUBPROVH·!CES. 3 BASIN AND RANGE - COLORADO PLATEAU TRANSITION • • • • • • • • • • 14 rHNERAL f.'iOUNTAINS - COVE FORT REGION. • • • • • • • • • • • • • • 16 REFERENCES •••••••••••••••••••••••••• • • 19 ACKNOWLEDGMENTS • • • • • • • • • • • • • • • • • • • • • • • • • 20 APPENDIX •••• •. • 21 I HEAT FLOW DATA: DETAILS. • • • • • • • • • • • • • • • • 21 II ABSTRACTS FROM MEETINGS • . • . • • • • . 1.19 ABSTRACT Sixty t~'lo new heat flow determinations for Utah are reported. Although the spatial distribution of sites is still uneven~ with greatest concentration of sites in southwest Utah where the geothermal energy potential appears to be greatest~ the new sites represent a considerable improvement in representing the regional heat flow patterns. Two broad areas having anomalous high heat flow have been indentified: the northern most of these regions encompasses part of the Deep Creek Mountains~ Spar tltountain and Keg Mountain of west central Utah; the southern most region includes Escalante Desert and Mineral Mountains - Cove Fort areas.
    [Show full text]
  • W9200094.Pdf
    STATE OF UTAH DEPARTt1EtJT OF tJATURAL RESOURCES Technical Publ ication No. 42 HYDROLOG IC RECOtJNA , SSANCE OF THE tWRTHERN GREAT SALT LAKE DESERT AND SUMMARY HYDROLOGIC RECONNAISSANCE OF NORTHWESTERN UTAH by Jerry C. Stephens, Hydrologist U. S. Geological Survey Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources Division of ~ater Rights 1974 CONTENTS Page Abstract ...........................................•....................... Introduction ••••.•••.••••.••••••••••••••••••••••••••••••••••••••••••••••••• 2 Previous studies and acknowledgments ••••••.•••••••••••••••••••••••••••••••• 3 Hydrologic reconnaissance of the northern Great Salt Lake Desert............................................................ 7 Location and general features •••••••••••.•.••••••••••••••••••.•.•.. 7 Hydrology •••••••••• ................................................ 7 Surface water •• ................................................ 7 Ground water ••••••••••••••••••••••••••••••••••••••••••••••••••• 11 Shallow brine aquifer ••• ................................... 12 Alluvial-fan aquifer ••• .................................... 16 Valley-fill aquifer 20 ot he r aqui fer 5 ••••••••••••••••••••••••••••••••••• 22 Discussion of recharge and discharge estimates ••••••••••••• 23 ~"a te r qua litY••••••• ........................................... 23 Potential for additional water-resources development •• 26 Summary of hydrology of northwestern Utah •••••••••••••••••••••••••••••••••• 26 Surface water .................•..•................................
    [Show full text]
  • Bulletin 42, Gold in Washington
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development W. A. GALBRAITH, Director DIVISION OF MINES AND GEOLOGY SHELDON L. GLOVER, Supervisor Bulletin No. 42 GOLD IN WASHINGTON By MARSHALL T. HUNTTING State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development W. A. GALBRAITH, Director DIVISION OF MINES AND GEOLOGY SHELDON L. GLOVER, Supervisor Bulletin No. 42 GOLD IN WASHINGTON By MARSHALL T. HUNTTING OLYMPIA STATE'. PRiNTiNG PLANT 1955 For sale by Department of Conservation and Development, Olympia, Washington. Price, one dollar. FOREWORD Gold, throughout the ages, has been synonymous with wealth. For thousands of years, it has been the foremost medium of ex­ change in most countries. Everyone is familiar with gold and with the romance associated with its recovery from occurrences in nature. In fact, it is probable that gold is the first, and to many the only, metal thought of when mining is mentioned. Certainly, it is the metal first thought of under ordinary conditions when a person decides to become a prospector and seek bis fortune on the streams and in the mountains. This is easily understood, for, of all metals, gold is the most simply and easily recovered from its containing formation, whether it occurs as a lode or as a placer deposit. A minimum of experience and equipment is required, and. when won, gold is tangible wealth, requiring little or no treatment to be ex­ changeable for goods. The interest in gold shown by the larger mining concerns has declined in late years because its fixed price does not compensate for the continually increasing costs of mining-in labor.
    [Show full text]