Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection Public Disclosure Authorized

Total Page:16

File Type:pdf, Size:1020Kb

Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection Public Disclosure Authorized Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection Public Disclosure Authorized WORKING PAPer 4 | Mining Kirsten Hund Carole Megevand with Edilene Pereira Gomes Public Disclosure Authorized Marta Miranda Erik W. Reed Public Disclosure Authorized Public Disclosure Authorized APRIL 2013 Deforestation Trends in the Congo Basin Reconciling Economic Growth and Forest Protection WORKING PAPer 4 | Mining Kirsten Hund Carole Megevand with Edilene Pereira Gomes Marta Miranda Erik Reed APRIL 2013 Working Paper 4: Mining iii CONTENTS ACRONYMS ....................................................................................................................................................vii AcknoWLedgments .................................................................................................................................ix IntrodUctIon .............................................................................................................................................xi Chapter 1. MIneraL WeaLth IN the Congo BasIN: LargeLY Untapped.........................1 Geology and Associated Mineral Resources ................................................................................................1 Mining Sector in the Congo Basin ....................................................................................................................3 Types of Mining Operations ........................................................................................................................4 Typology of Mining Operators ....................................................................................................................5 Mining in the Congo Basin Forest: Key Characteristics and Environmental Concerns ......................................................................................................................5 Chapter 2. Prospects For MINIng DEVELopment IN the Congo BasIN ......................9 Trends in World Demand for Minerals and Long-Term Perspectives .................................................9 Copper...............................................................................................................................................................10 Gold ....................................................................................................................................................................12 Iron Ore .............................................................................................................................................................13 Aluminum.........................................................................................................................................................15 Potassium Chloride ......................................................................................................................................15 Coltan, Tantalum, and Nobium ................................................................................................................15 Exploration and Prospects for the Congo Basin Countries ...................................................................17 New Deals: Infrastructure Burden Lifted from Host Countries ...........................................................17 Chapter 3. PotentIAL Impacts OF MINIng ActIVITIes on Congo BasIN Forests ................................................................................................. 19 Direct Impacts of Large-Scale Mining Operations at Different Stages .............................................19 Exploration Activities ................................................................................................................................... 20 Construction ....................................................................................................................................................21 Processing ........................................................................................................................................................21 Closure and Rehabilitation ........................................................................................................................ 22 Indirect Impacts Resulting from Infrastructure Associated with Large-Scale Mining Operations ............................................................................................................................................... 22 Transport Infrastructure .............................................................................................................................. 23 iv Deforestation Trends in the Congo Basin: Reconciling Economic Growth and Forest Protection Dams and Hydropower Plants ................................................................................................................ 23 Induced Impacts of Large-Scale Mining Operations .............................................................................. 23 Agricultural Expansion ................................................................................................................................ 23 Bushmeat Hunting ....................................................................................................................................... 23 Logging ............................................................................................................................................................. 23 Cumulative Impacts of Large-Scale Mining Operations .........................................................................24 Impacts of Artisanal and Small-Scale Mining .............................................................................................24 Direct Impacts ................................................................................................................................................24 Indirect Impacts ............................................................................................................................................ 25 Cumulative Impacts .................................................................................................................................... 25 Conflict Minerals................................................................................................................................................... 25 Chapter 4. HOW to ReconcILE MINIng DEVELopment WIth Forest PreserVatIon: POLIcy RecommendatIons .......................................................29 Promote Integrated Land Use Planning for Mining and Associated Infrastructure Development ................................................................................................................................................. 29 Set High Standard Goals for Environmental and Social Management ............................................ 30 Improve Management of the Artisanal and Small-Scale Mining Sector in Areas of High Biodiversity ..........................................................................................................................31 Offset Negative Impacts of Mining Operations ....................................................................................... 32 Promote Innovative Mechanisms to Offset Negative Impacts ........................................................... 35 Strengthen Governments’ Capacities to Manage the Mining Sector ............................................... 35 CONCLUSION and OUTLook ................................................................................................................37 REFerences ................................................................................................................................................39 AnneX: MINIng Sector IN the Congo BasIN—COUntry ProFILes .................................43 Cameroon ............................................................................................................................................................... 43 Democratic Republic of Congo ...................................................................................................................... 44 Republic of Congo ............................................................................................................................................... 45 Gabon ...................................................................................................................................................................... 46 Central African Republic .................................................................................................................................... 47 Equatorial Guinea ................................................................................................................................................ 50 Working Paper 4: Mining v FIGUres Figure 1.1 Geological Map of the Congo Basin and Its Surroundings ...........................................2 Figure 1.2 Overlapping Mining and Forestry Concessions in Gabon .............................................8 Figure 2.1 Evolution of and Forecast for Prices of Metals and Minerals (US$ Year 2005=100) (as of September 2012) ..........................................................10 Figure 2.2 Variation in and Forecast for Copper Price (US$/million tons; prices expressed in constant 2005 US$) .........................................................................12 Figure 2.3 Gold Production Shares in Africa .........................................................................................13
Recommended publications
  • Division of Mines and Mining
    STATE OF WASHINGTON ARTHUR B. LANGLIE, GOVERNOR Department of Conservation and Development JOHN BROOKE FINK, Director THIRD BIENNIAL REPORT of the DIVISION OF MINES AND MINING For the Period Commencing January 1, 1939 and Ending January 1, 1941 By THOMAS B. HILL, SUPERVISOR J . w. MELROSE, GEOLOGIST OLYMPIA STATE PRI NTINC PLANT DIVISION OF MINES AND MINING Hon. John Brooke Fink, Director, Department of Conservation and Development, Olympia, Washington. Sir: I have the honor to submit herewith the third biennial report of the Division of Mines and Mining, covering the period from January l, 1939, to January 1, 1941. Respectfully, THOMAS B. HILL, Supervisor. DIVISION OF MINES AND MINING THOMAS B. HILL Supervisor SUMMARY OF MINERAL INFORMATION The present widespread interest in the mineral resources of Washington had its beginning in 1933 when the Director of the Department of Conserva­ tion and Devlopment devoted a substantial part of an allocation of $80,000 from Washington Emergency Relief Administration to mineral investigations. Two years later, the Division of Mines and Mining was created, and has continued the investigations, the work of compiling information and promoting the development of the mineral resources. Extensive information had been developed on the mineral resources of the State in the previous twenty-five years, largely through the Washington Geological Survey and the Division of Geology. This information had been published in some 50 or more bulletins and 1·eports, about half of which are now out of print. The information, while extensive, was scattered and in many instances fragmentary. The result of the work begun by the Department in 1933, and continued by this Division since 1935, is that now information is available on all the known mineral occurrences of the State.
    [Show full text]
  • There Is More Than 3TG the Need for the Inclusion of All Minerals in EU Regulation for Conflict Due Diligence
    There is more than 3TG The need for the inclusion of all minerals in EU regulation for conflict due diligence SOMO Paper | January 2015 Companies that use minerals in their products risk International standards and regulation contributing to conflict financing or human rights abuses via their mineral supply chains, especially if upstream Normative standards suppliers are located in conflict zones. This problem is Under the European Convention on Human Rights and being addressed by the European Commission (EC), international human rights law, European member states which has proposed a new regulation with a voluntary have an obligation to ensure that business enterprises due diligence framework to address the risk of financing operating within their jurisdiction do not cause or armed groups and security forces, and mitigate other contribute to human rights violations. The United Nations adverse impacts associated with the extraction, transport Guiding Principles on Business and Human Rights (UNGP) and trade of four particular minerals: tin, tantalum, and the Organisation for Economic Development and tungsten and gold (3TG). Cooperation’s Guidelines for Multinational Enterprises (OECD Guidelines) set clear standards for business enter- This briefing paper discusses one specific issue in the prises to respect human rights, conduct human rights due proposed EC regulation – the limited number of conflict diligence and implement measures to prevent, address and minerals it includes. It puts the case that the decision to redress any human rights violations.1 The UNGP prescribe focus on the import of minerals and metals containing or that states need to “ensure that their current policies, consisting of 3TG is arbitrary and far too limited to achieve legislation, regulations and enforcement measures are the proposal’s objective of reducing the financing of armed effective in addressing the risks of business involvement groups and security forces through mineral proceeds in in gross human rights abuses”.2 The UNGP have special conflict-affected and high-risk areas.
    [Show full text]
  • Shift in Global Tantalum Mine Production, 2000–2014
    Shift in Global Tantalum Mine Production, 2000–2014 Tantalum has a unique set of tantalum from mine production is econom- (defined as sharing a border with the properties that make it useful in a ically viable in only a few countries. DRC) (U.S. Securities and Exchange number of diverse applications. The Although developed countries Commission, 2012; Chasan, 2015; ability of the metal to store and release dominated tantalum mine production U.S. Department of State, 2015). electrical energy makes it ideally suited in the early 2000s, production today The DRC, Rwanda, and surrounding for use in certain types of capacitors is dominated by countries in the Great countries are not globally significant that are widely used in modern elec- Lakes Region of Africa (figs. 1 and 2). sources of tin, tungsten, or gold, tronics. Approximately 60 percent of There is concern that the sales of accounting for only about 2 percent global tantalum consumption is in the minerals, including columbite-tantalite or of the mined world supply for each of electronics industry (Papp, 2015). The “coltan,” a mineral from which tantalum these elements. The region has, however, ductility and corrosion resistance of the is derived, have helped finance rebel evolved to become the world’s largest metal lends itself to application in the groups accused of violating human rights producer of mined tantalum. chemical processing industry, and its high as part of the continuing armed conflict A further complication of the melting point and high strength reten- in the Democratic Republic of the Congo production of tantalum stems from the tion at elevated temperatures make it an (DRC) and neighboring countries.
    [Show full text]
  • Green Extraction of Niobium and Tantalum for Ethiopian Kenticha Ores by Hydrometallurgy Process: a Review
    Material Science & Engineering International Journal Mini Review Open Access Green extraction of niobium and tantalum for Ethiopian kenticha ores by hydrometallurgy process: a review Abstract Special Issue - 2018 This review presents an overview of the currently mined tantalite ores in Ethiopia Berhe Goitom Gebreyohannes,1 Velazquez (in particular Kenticha ores) and potentialities to extract niobium (Nb) and tantalum del Rosario Alberto,2 Bogale Tadesse,3 (Ta) products using green technologies. The foremost source of niobium and tantalum 4 5 is the columbite-tantalite mineral or “coltan”. Since hydrometallurgical methods are Abubeker Yimam, Girma Woldetinsae, 1 most commonly used to recover these metals from raw materials, Solvent Extraction Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Ethiopia (SX) processes have been used for producing pure niobium and tantalum products. 2Jimma Institute of Technology, Jimma University, Ethiopia All commercialized “SX” processes are exclusively conducted in the presence of 3Department of Mining Engineering and Metallurgical fluoride ions, most frequently in a mixture with a mineral acid such as sulphuric or Engineering, Western Australia School of Mines, Curtin hydrochloric acid. Due to increasingly stringent regulations concerning the protection University, Australia of human health and environment, there is an urgent need to develop novel aqueous 4Process Engineering and Industrial Technology, Addis Ababa and organic systems to reduce or eliminate the use of harmful fluorides. Because the University, Ethiopia Kenticha pegmatite spodumene has an excess percent of uranium, certain markets 5Research and Development Directorate, Ministry of Mines, stopped importations of Ethiopian coltan. So, investigations are required to indentify Petroleum and Natural Gas, Ethiopia aqueous complex systems and solvent extraction systems to enable the purification of niobium and tantalum without the use of fluorides.
    [Show full text]
  • 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking.
    [Show full text]
  • Eparation of the Purest Aluminum Chemicals
    III. MINERAL COMMODITIES A. INDIVIDUAL MINERAL COMMODITY REVIEWS ALUMINA & ALUMINUM A. Commodity Summary Aluminum, the third most abundant element in the earth's crust, is usually combined with silicon and oxygen in rock. Rock that contains high concentrations of aluminum hydroxide minerals is called bauxite. Although bauxite, with rare exceptions, is the starting material for the production of aluminum, the industry generally refers to metallurgical grade alumina extracted from bauxite by the Bayer Process, as the ore. Aluminum is obtained by electrolysis of this purified ore.1 The United States is entirely dependent on foreign sources for metallurgical grade bauxite. Bauxite imports are shipped to domestic alumina plants, which produce smelter grade alumina for the primary metal industry. These alumina refineries are in Louisiana, Texas, and the U.S. Virgin Islands.2 The United States must also import alumina to supplement this domestic production. Approximately 95 percent of the total bauxite consumed in the United States during 1994 was for the production of alumina. Primary aluminum smelters received 88 percent of the alumina supply. Fifteen companies operate 23 primary aluminum reduction plants. In 1994, Montana, Oregon, and Washington accounted for 35 percent of the production; Kentucky, North Carolina, South Carolina, and Tennessee combined to account for 20 percent; other states accounted for the remaining 45 percent. The United States is the world’s leading producer and the leading consumer of primary aluminum metal. Domestic consumption in 1994 was as follows: packaging, 30 percent; transportation, 26 percent; building, 17 percent; electrical, 9 percent; consumer durables, 8 percent; and other miscellaneous uses, 10 percent.
    [Show full text]
  • New Enterprise Project
    NI 43-101 Technical Report Assessing the Au, Cu, Porphyry Potential of the New Enterprise Project Maynard Mining District, Kingman, Arizona, United States of America FOR Pershing Resources Company Inc. 200 South Virginia Street, 8th Floor Reno, NV 89501 AUTHORS: Edward Walker, Ph.D., P.Geo. Jim Renaud, Ph.D., P.Geo. Natalie Pietrzak-Renaud, Ph.D., P.Geo. Effective Date : June 18, 2018 Signature Date: May 22, 2018 Table of Contents Item 1: Summary .......................................................................................................................... 7 Item 2: Introduction.................................................................................................................... 12 Item 3: Reliance on Other Experts .............................................................................................. 14 Item 4: Property Description and Location ................................................................................ 14 Item 5: Accessibility, Climate, Local Resources, Infrastructure, and Physiography ................... 27 Location and Access ............................................................................................................... 27 Climate and Vegetation .......................................................................................................... 27 Local Resources and Infrastructure ........................................................................................ 27 Physiography .........................................................................................................................
    [Show full text]
  • Ofr034 85.Pdf
    GALLIUM AND GERMANIUM POTENTIAL IN ALASKA by: Steven A. Fechner **k*t******k**************-k****f******* 1\ 34-85 I I UNITED STATES DEPARTMENT OF THE INTERIOR Donald P. Hodel, Secretary I BUREAU OF MINES I Robert C. Horton, Director I CONTENTS Page Abstract............. ................... .... .............. ... .... 1 Introduction........ ..................................... 1 Acknowledgments............................................. 2 Bureau of Mines investigation.................................. 2 Results............. .................. .......................... 3 Gallium............ ................... ...... .... ............. 3 Germanium....................... .......................... 6 Potential ......... ........................................ ...... 7 Conclusions and recommendations................................. 7 References............... ............... ................... 9 ILLUSTRATIONS 1. Gallium and germanium location map of Alaska............(in pocket) TABLES 1. Recoverable gallium and germanium concentrations in ore deposits............................................. ........ 4 2. Analytical results from selected mineral specimens and concentrates................................................ 5 i UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT ppm Parts per million % Percent ii GALLIUM AND GERMANIUM POTENTIAL IN ALASKA By Steven A. Fechner 1/ ABSTRACT The U.S. Bureau of Mines is currently conducting a mineral study of the gallium and germanium potential in Alaska as part of the critical and strategic
    [Show full text]
  • Cdm Annual Report 2015 EN
    CHAMBRE DES MINES FEDERATION DES ENTREPRISES DU CONGO 2015 DRC MINING INDUSTRY ANNUAL REPORT IN THIS ISSUE PRODUCTION ● PERU/ZAMBIA/DRC COMPARISON ● DRC BUSINESS CLIMATE ● CSR ● AND MORE www.chambredesminesrdc.com CONTENT 2 Content 3 Editorial 4 2015 Production Data 9 3T (Tin , Tantalum and Tungsten) 10 2015 3T Supply Chain EITI Report: The mining industry is still highly active within the DRC 11 Business Climate 12 Jobs 13 Lack of energy 14 Artisanal Mining 15 Commodity-Price Trend 16 Highlights - South Kivu Peru/ Zambia/ DRC comparison 17 2015 CSR Report 2 Chambre des Mines - 2015 DRC Annual Report EDITORIAL The year 2015 was marked by a fall in prices for metals and commodities, the worst since the global economic crisis of 2008/2009. Although the DRC has adjusted rather well to this new scenario - gold production was up 30% and copper showed only a 3% decrease - the economic activity of the country will nevertheless be impacted significantly in 2016. Copper production in Q4 2015 was already more than 12% lower than in Q4 2014. Some analysts believe that the crisis could last longer than the previous one because it is powered by a slowdown in Chinese demand and increased mining production worldwide. This will have major consequences on employment and on tax reve- nues in the DRC, where the country's growth depends heavily on the mining sector. However, there are reasons for optimism. The country still full of many world class mining, industrial and agricultural pro- jects; new mines started commercial production in 2015, and other major projects are expected to emerge in the coming years.
    [Show full text]
  • The Journal of the Geological Society of Jamaica Bauxite /Alumina Symposium 1971
    I THE JOURNAL OF THE GEOLOGICAL SOCIETY OF JAMAICA BAUXITE /ALUMINA SYMPOSIUM 1971 LIBRARY 01' ISSUE '/// <°* PREFACE The recent Bauxite/Alumina Industry Symposium, which was sponsored by the Geo­ logical Society of Jamaica, was an attempt to bring together scientists and engineers to discuss the many problems relating to the industry. Ihe use of a multi-dicipli- nary approach has the advantage of permitting different lines of attack on the same problems, and thereby increasing the likelihood of finding solutions to them. Also, the interaction of people from the University, industry and Government greatly facilitates communication and allows problems to be evaluated and examined from different points of view. The bauxite/alumina industry was selected for discussion because of its significance in the economy of Jamaica. It contributed about 16% of the country's total Gross Domestic Product in 1970, and is the economic sector with the greatest potential for growth. Jamaica's present viable mineral industry only dates back to 19S2 when Reynolds Jamaica Mines, Limited started the export of kiln dried metallurgical grade bauxite ore. This was followed shortly by the production and export of alumina by the then Alumina Jamaica Limited (now Alcan Jamaica, Limited), a subsidiary of the Aluminium Company of Canada. The commencement of this new and major industry followed a successful exploration and development programme which resulted largely from the keen perception and perseverance of two men. First, Mr. R.F. Innis observed that some of the cattle lands on the St. Ann plateau were potential sources of aluminium ore, and then Sir Alfred DaCosta persisted in attempts to interest aluminium companies in undertaking exploration work here.
    [Show full text]
  • Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium
    Appendix C – Assessment of Acid and Metalliferous Drainage – Greenbushes Lithium Mine Expansion – 2018 Mining Proposal (GHD 2018) and Talison Leaching Study – Stage 2 AMD Testing Results (GHD 2019) GHD | Report for Talison Lithium Australia Pty Ltd – Greenbushes Mine Expansion – Works Approval 1, 6136944 TALISON LITHIUM Talison Lithium Australia Pty Ltd Assessment of acid and metalliferous drainage Greenbushes Lithium Mine Expansion - 2018 Mining Proposal July 2018 WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION Executive summary GHD was engaged by Talison Lithium Australia Pty Ltd to undertake an Acid and Metalliferous Drainage assessment (AMD), to demonstrate the leaching potential of the future tailings and waste rock due to the proposed expansion of the mine - the Greenbushes Lithium Mine, located at Greenbushes Western Australia. The scope of works for this AMD study included the collation and geo-statistical analysis of Talison’s mineralogical assay data base - for the proposed waste rock and ore, and a review of the body of information relating to previous AMD assessments of the previously mined waste rock and existing tailings facilities. Given the continuity of mineralogy between the previously mined material and the proposed mined material (waste rock and ore), the findings of previous AMD assessments, relating to the existing waste rock and tailings facilities, are considered reliable indicators of the future AMD risk. This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the Report. Acidic drainage risk The risk that the tailings (derived from ore processing) will produce adverse quantities of acid is considered low, given the low sulphur content (average 0.04%).
    [Show full text]
  • Fluid-Inclusion Petrology Data from Porphyry Copper Deposits and Applications to Exploration COVER PHOTOGRAPHS 1
    - . Fluid-Inclusion Petrology Data from PorpHyry Copper Deposits and Applications to Exploration COVER PHOTOGRAPHS 1. Asbestos ore 8. Aluminum ore, bauxite, Georgia I 2 3 4 2. Lead ore, Balmat mine, N.Y. 9. Native copper ore, Keweenawan 5 6 3. Chromite, chromium ore, Washington Peninsula, Mich. 4. Zinc ore, Friedensville, Pa. 10. Porphyry molybdenum ore, Colorado 7 8 5. Banded iron-formation, Palmer, 11. Zinc ore, Edwards, N.Y. Mich. 12. Manganese nodules, ocean floor 9 10 6. Ribbon asbestos ore, Quebec, Canada 13. Botryoidal fluorite ore, 7. Manganese ore, banded Poncha Springs, Colo. II 12 13 14 rhodochrosite 14. Tungsten ore, North Carolina Fluid-Inclusion Petrology­ Data from Porphyry Copper Deposits and Applications to Exploration By]. THOMAS NASH GEOLOGY AND RESOURCES OF COPPER DEPOSITS GEOLOGICAL SURVEY PROFESSIONAL PAPER 907-D A summary of new and published descriptions offluid inclusions from 3 6 porphyry copper deposits and discussion of possible applica'tions to exploration for copper deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Nash, John Thomas, 1941- Fluid-inclusion petrology-data from porphyry copper deposits and applications to exploration. (Geology and Resources of Copper Deposits) (Geological Survey Professional Paper 907-D) Bibliography: p. Supt. of Docs. no.: I 19.16:907-D 1. Porphyry-Inclusions. 2. Porphyry-Southwestern States. 3. Copper ores-Southwestern States. I. Title. II. Series. III. Series: United States Geological Survey Professional Paper 907-D. QE462.P6N37 549'.23 76-608145 For sale by the Superintendent of Documents, U.S.
    [Show full text]