1 Die Gr ¨Undung Des Forschungszentrums DESY

Total Page:16

File Type:pdf, Size:1020Kb

1 Die Gr ¨Undung Des Forschungszentrums DESY 1 1 Die Grundung¨ des Forschungszentrums DESY Die Geschichte beginnt im Jahr 1955. Die wissenschaftspolitischen undaußeren ¨ Umst¨ande waren der Gr¨undung eines gr¨oßeren wissenschaftlichen Unternehmens g¨unstig: – Deutschland erhielt 1955 einen Teil seiner Souver¨anit¨at zur¨uck. Damit fiel das Verbot, kernphysikalische Forschungen zu betreiben. – Das neugegr¨undete Bundesministerium f¨ur Atomkernenergie1) (BMAt) unter Franz Josef Strauss hatte Geld und war zu großen Unternehmungen bereit. – Die Kernphysik hatte ein hohes Ansehen und es bestand in Deutschland ein großes Bed¨urfnis, den Vorsprung des Auslands auf diesem aktuellen For- schungsgebiet aufzuholen. – Die 1954 erfolgte Gr¨undung des CERN, des europ¨aischen Zentrums f¨ur sub- atomare Forschung, konnte als Beispiel und Anreiz dienen. Die damit gebotene Chance zu ergreifen – dazu bedurfte es jedoch einer außer- gew¨ohnlichen Pers¨onlichkeit. Sie trat auf in Gestalt eines 44-j¨ahrigen, aus Wien stam- menden Kernphysikers, der in den USA Karriere gemacht und 1954 einen Ruf als Professor an die Universit¨at Hamburg erhalten hatte: Willibald Jentschke. Er war mit den Großprojekten der Forschung in den USA vertraut, war er doch selbst dort in lei- tender Funktion t¨atig gewesen. Hamburg konnte ihn nur reizen, wenn er hier ebenfalls etwas Neues, Großes w¨urde aufbauen k¨onnen. Dass ihm dies gelingen sollte, war ne- ben seiner fachlichen Kompetenz und dem Ehrgeiz, in der vordersten Liga der Physik mitzuspielen, ganz besonders auch seiner Hartn¨ackigkeit und Unverfrorenheit gepaart mit geschickt eingesetztem Wiener Charme zu verdanken. Die n¨aheren Hintergr¨unde und Einzelheiten sind in dem Buch von C. Habfast [1] geschildert; sie werden hier gek¨urzt wiedergegeben. Die Geschichte beginnt also mit Willibald Jentschke. Er wurde am 6. Dezember 1911 in Wien geboren. Im Alter von 24 Jahren wurde er an der Universit¨at Wien mit einer kernphysikalischen Arbeit promoviert. Bereits 1938, kurz vor der Entdeckung 1)Ab 1957 wurde es zum Bundesministerium f¨ur Atomkernenergie und Wasserwirtschaft. Von schnellen Teilchen und hellem Licht: 50 Jahre Deutsches Elektronen-Synchrotron DESY. Erich Lohrmann und Paul S¨oding Copyright © 2009 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40990-7 2 1DieGr¨undung des Forschungszentrums DESY Abbildung 1.1 Professor Willibald Jentschke (DESY-Archiv). der Uranspaltung durch Hahn und Strassmann, hatte er sich mit der Kernphysik von Uran besch¨aftigt, und 1939 publizierte er im Anzeiger der Akademie der Wissenschaf- ten in Wien eine Arbeit mit dem Titel: Uber¨ die Uranbruchst¨ucke durch Bestrahlung ” von Uran mit Neutronen“. Weitere Arbeiten zum selben Thema folgten in der Zeit- ’ schrift f¨ur Physik‘ und in den Naturwissenschaften‘. Damit hatte er sich als einer der ’ Experten f¨ur Uranspaltung etabliert, und w¨ahrend des Krieges arbeitete er weiterhin an Fragen der Physik der Uranspaltung. Nach dem Krieg erhielt er 1947 ein Ange- bot, in die USA zu gehen, vielleicht auch unter dem Eindruck der russischen Kon- kurrenz bei der Rekrutierung wissenschaftlicher Talente [2]. Von 1950 bis 1956 war er Professor an der University of Illinois at Urbana und ab 1951 Direktor des dorti- gen Zyklotron-Laboratoriums. Unter seiner Leitung wurde das Zyklotron umgebaut und modernisiert. Jentschke war damit als Experte in Kernphysik und im Bau von Kernphysik-Beschleunigern ausgewiesen. 1DieGr¨undung des Forschungszentrums DESY 3 Im Jahre 1954 erhielt er einen Ruf an die Universit¨at Hamburg. Um ihn angesichts der g¨unstigen Arbeitsbedingungen in den USA abzuwerben, war aber eine gewisse Großz¨ugigkeit von Seiten seines potentiellen neuen Arbeitgebers, der Freien und Han- sestadt Hamburg, erforderlich. Dies erkl¨art wenigstens zum Teil die Verhandlungsbe- reitschaft der Hamburger Beh¨orden. Auf der Seite der Universit¨at war es vor allem Professor Heinz Raether, der sich f¨ur die Berufung Jentschkes einsetzte – er wollte die große Physik“ nach Hamburg holen. Jentschkes Erfolge bei den Verhandlungen mit ” den Hamburger Beh¨orden sind legend¨ar. In jede neue Verhandlung kam er mit noch h¨oheren Forderungen, und schließlich bewilligte der Senat am 2. August 1955 die f¨ur damalige Verh¨altnisse ungeheuerliche Summe von 7,35 Mio DM2). Damit sollte ein neues Physikinstitut entstehen, dessen Mittelpunkt eine Kernmaschine‘ bilden w¨urde. ’ Jentschke nahm den Ruf an die Universit¨at Hamburg am 18. 10. 1955 an, und im Sommer 1956 kam er endg¨ultig nach Hamburg. In der Zwischenzeit hatte er erkannt, dass die Entscheidunguber ¨ die Eigenschaften dieser Kernmaschine sorgf¨altiger Uberlegung¨ bedurfte. Von Hause aus ein Kernphysi- ker, hatte er doch in den USA den Aufbruch in das neue Gebiet der Hochenergiephy- sik wahrgenommen. Seine finanziellen Forderungen beruhten auf dem Bestreben, in Hamburg ein international konkurrenzf¨ahiges Projekt auf diesem Gebiet zu realisieren. Eine Gelegenheit zur Konsultation mit deutschen Kollegen ergab sich bei dem interna- tionalen Symposiumuber ¨ High Energy Particle Accelerators‘ am CERN in Genf vom ’ 11. 6.–16. 6. 1956. Eine Diskussionsrunde, an der neben Jentschke auch W. Gentner, W. Paul, W. Riezler, Ch. Schmelzer, A. Schoch und W. Walcher teilnahmen, arbeitete einen Plan f¨ur den zuk¨unftigen Beschleuniger aus, der in Hamburg unter Jentschkes Leitung entstehen sollte [3]. Diese Runde bestand aus Deutschlands besten und erfah- rensten Experten auf diesem Gebiet. So waren z. B. W. Gentner, Ch. Schmelzer und A. Schoch maßgeblich an der Entwicklung und am Bau des Synchro-Zyklotrons SC und des großen 24 GeV Protonen-Synchrotrons PS am CERN beteiligt. Der sp¨atere Nobelpreistr¨ager W. Paul hatte 1954 am Bonner Physikalischen Institut mit dem Bau eines 500 MeV Elektronen-Synchrotrons begonnen. Die Maschine verwendete erst- mals in Europa das Prinzip der starken Fokussierung [4], welches den Bau großer Syn- chrotrons revolutionieren sollte – eine echte Pionierleistung. Das Bonner Synchrotron ging 1958 in Betrieb, ein Jahr fr¨uher als das PS am CERN.3) Professor Walcher hat sp¨ater anl¨asslich der Gr¨undung von DESY in einer Tischrede im Hamburger Rathaus die Kernpunkte der damaligen Diskussion beschrieben4): Es war den Beteiligten klar, dass die Hochenergiephysik ein neues wichtiges und aktuelles Forschungsgebiet sein w¨urde. Das Ziel war, den jungen deutschen Physikern neben CERN auch im eigenen Land ad¨aquate M¨oglichkeiten durch den Bau einer eigenen Forschungsanlage zu bie- 2)1 EUR = 1,9558 DM 3)Die weltweit erste Maschine dieser Art war ein 1,5 GeV Elektronen-Synchrotron, von Robert R. Wilson an der Cornell Universit¨at erbaut und 1953 in Betrieb genommen [5, 6]. 4)Er sprach als Mitglied des Arbeitsausschusses f¨ur die Vorbereitung von DESY sowie als Vorsitzen- der der Deutschen Physikalischen Gesellschaft, und damit auch als Sprecher der ganzen deutschen Physikergemeinde. Seine Rede gibt eine gute Darstellung der damaligen Situation. Das macht sie historisch interessant. Sie ist deshalb im Wortlaut im Anhang E wiedergegeben. 4 1DieGr¨undung des Forschungszentrums DESY ten. Schon hatten die anderen großen europ¨aischen Nationen solche Pl¨ane gefasst. Da wollten die deutschen Physiker nicht zur¨uckstehen. Das Ergebnis der Diskussion in Genf war das sogenannte Genfer Memorandum‘. ’ Darin wurde der Bau eines Elektronen-Synchrotrons von etwa 6 GeV Energie vorge- schlagen. So wurde die Konkurrenz mit den großen Protonen-Synchrotrons vermieden, die am CERN in Genf und am Brookhaven Nationallaboratorium in den USA im Bau waren, und zugleich die Aussicht zu komplement¨aren Untersuchungen er¨offnet. Die Energie von 6 GeV war die gr¨oßte Energie, die man damals realistischerweise mit Elektronen-Synchrotrons zu erreichen hoffte. Der Grund f¨ur diese Grenze ist die Syn- chrotronstrahlung, die der umlaufende Elektronenstrahl des Synchrotrons erzeugt. Die Intensit¨at dieser Strahlung steigt rasch mit der Energie an, und damit wachsen auch die Schwierigkeiten f¨ur den Betrieb einer derartigen Maschine. G¨unstig f¨ur diesen Vorschlag war auch, dass Prof. M. S. Livingston, einer der Er- finder der starken Fokussierung, an der Harvard Universit¨at ebenfalls den Bau eines 6 GeV Elektronen-Synchrotrons vorbereitete, den Cambridge Electron Accelerator‘ ’ (C.E.A.). Professor Livingston bot den deutschen Kollegen in uneigenn¨utziger Weise seine Hilfe beim Bau einer Schwestermaschine an, und die Aussicht, von der Erfahrung der Amerikaner profitieren zu k¨onnen, war hochwillkommen. Die beiden Maschinen in Cambridge und Hamburg w¨urden die gr¨oßten dieser Art in der Welt sein und da- mit in Neuland vorstoßen k¨onnen. Und auch in anderer Beziehung stieß dieser Plan in Neuland vor: Die Maschine sollte allen kompetenten Physikern in Deutschland zur Nutzung zur Verf¨ugung stehen und nicht mehr ausschließlich Eigentum‘ eines einzel- ’ nen Instituts sein. In dem Genfer Memorandum wurde weiterhin vorgeschlagen, die Maschine in Ham- burg unter der Leitung von W. Jentschke zu bauen. Hierbei spielten sicher die 7,35 Mio DM, die Hamburg zugesagt hatte, eine Rolle und auch dass die Aussicht bestand, in Hamburg ein g¨unstiges Gel¨ande f¨ur den Bau zu finden. Am 27. 6. 1956 wurde das Genfer Memorandum, welches wichtige Unterst¨utzung von Werner Heisenberg erfuhr, dem Arbeitskreis Kernphysik des BMAt vorgetragen und fand die Zustimmung der Physiker und auch der Beh¨orde. Ministerialdirigent Dr. Alexander Hocker vom BMAt schlug vor, auch die Bundesl¨ander zu beteiligen. Damit wurde der Zust¨andigkeit der Bundesl¨ander f¨ur die Forschung Rechnung getragen und die deutschen
Recommended publications
  • Wie Es Zur Gründung Des Instituts Für Hochenergiephysik Kam
    HEPHY-PUB-997 24 Nov. 2016 (rev. 19 Sep. 2017) Wie es zur Gründung des Instituts für Hochenergiephysik kam Winfried A. Mitaroff Institut für Hochenergiephysik der ÖAW, Wien ∗ Zusammenfassung Nach dem Beitritt Österreichs zur Europäischen Organisation für Kernforschung (CERN) im Jahr 1959 und bescheidenen Anfängen an der Universität Wien wurde 1966 mit der Gründung des Instituts für Hochenergiephysik (HEPHY) durch die Österreichische Akademie der Wissenschaften (ÖAW) der Grundlagenforschung auf dem Gebiet der experimentellen Teilchenphysik in unserem Land eine solide Entwicklungsmöglichkeit eröffnet. In den seither vergangenen 50 Jahren war das Institut im Rahmen internationaler Kollaborationen an einer Vielzahl von Experimenten an Großforschungsanlagen (vorwiegend, aber nicht ausschließlich, bei CERN) beteiligt – darunter auch an so bedeutenden, welche später zu Physik-Nobelpreisen geführt haben. Hierzu hat es wichtige Beiträge geleistet, insbesondere in den Bereichen Detektorentwicklung, Datenanalyse und Phänomenologie. Die vorliegende Studie zielt auf die Vorgeschichte, welche schließlich zur Institutsgründung führte. Als Quellen dienten Sitzungsprotokolle und Tätigkeitsberichte, Institutsbroschüren, Autobiografien, sowie persönliche Erinnerungen. Dieser Artikel stellt den ersten Teil eines Beitrags zur Monografie “175 Jahre Österreichische Akademie der Wissenschaften” (Wien 2022) dar, welcher die wissenschaftliche Institutsgeschichte bis zur Gegenwart beschreiben wird. 1 Einleitung Die Hochenergiephysik als selbständige Wissenschaftsdisziplin
    [Show full text]
  • Willibald Jentschke –
    European organization for nuclear research Willibald Jentschke – Willibald Jentschke founder of DESY and former Director"General of CERN passed away on March + on 18 December 1959. Jentschke became its first director and remained in this position until 1970. Jentschke served as Director-General of CERN Laboratory I – the original Meyrin site – from 1971–75. During the same period, John Adams was Director-General of the neighbouring Laboratory II, where the new SPS pro- ton synchrotron was being construct- ed. Having two Directors-General was an unusual and delicate situation, but to their eternal credit Jentschke and Adams handled it well. Jentschke oversaw the exploitation of important new investments, including an ambi- tious research programme for neutri- no physics. In 1973, this effort enabled physicists to discover the neutral cur- rents of the weak interaction. Faced with a major discovery, CERN was nervous. However, Jentschke ensured that the result went on record as one Born in Vienna, Willibald Jentschke of the Laboratory’s great achieve- obtained his Ph.D. in nuclear physics ments. at the age of 24. He continued working in this field in Vienna for many years. As Director-General of CERN In 1951, he became director of the Jentschke wrote in 1975: "I believe cyclotron laboratory at the University that we must base our future plans on of Illinois. When the University of international collaboration, certainly Hamburg offered him the chair for within Europe, or perhaps, if condi- experimental physics in 1955 he tions eventually permit, within a wider requested funds to create a modern context." This vision is now becoming research facility in Germany.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Veröffentlichungen Und Vorträge
    Veröffentlichungen und Vorträge Veröffentlichungen und Vorträge 287 288 DESY-Kolloquien Festkolloquium für Günter Wolf M. DERRICK (ANL Argonne/USA) The Physics Interplay between Hadron and Electron Facilities. 10 Jahre DESY Zeuthen R. PECCEI (UCLA/USA) Festkolloquium The Deep Inelastic Trail. 3.12.2002 A. WAGNER (DESY Hamburg/D) Begrüßung. DESY Lecture Series in Memory of Prof. Dr. W. Jentschke J. WANKA (Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg) W.K.H. PANOFSKY (Univ. Stanford/USA) Grußwort. The Danger Posed by Nuclear Weapons. 5.12.2002 H. SCHUNCK (BMBF, Berlin/D) Transformation oder Urknall – Physik in Deutschland 10 Jahre danach. V. SOERGEL (Univ. Heidelberg/D) Academic Training 1992 – DESY wird größer: Erinnerung an die Entstehung von DESY Zeuthen. U. GENSCH (DESY Zeuthen/D) P. SCHMÜSER (Univ. Hamburg/D) DESY Zeuthen heute. Basic Elements of Accelerator Physics. 18.–20.02.2002 C. SPIERING (DESY Zeuthen/D) Neutrinoastrophysik – Vom Baikalsee zum Südpol. G. WEIGLEIN (Univ. of Durham/GB) Electroweak Physics: Preparing for TESLA. D. ECKSTEIN (CERN Geneva/CH) 13.–15.05.2002 Struktur des Protons und die starke Kraft. V. MÜLLER (Astrophys. Inst. Potsdam/D) D. PLEITER (DESY Zeuthen/D) Astrophysics and Cosmology. Parallelrechner und Physik auf dem Gitter. 7./8.10.2002 J. ILLANA (Univ. Hamburg/D) Hunting for Precision at High Energies. S. RIEMANN (DESY Zeuthen/D) Vorträge – Physik bei TESLA – Ursprung der Masse. Innerbetriebliche Fortbildung Einführung in die Ausstellung: TESLA – Licht der Zukunft A. WAGNER (DESY Hamburg/D) S. SACK (Hamburg/D) Unternehmensberater – Was tun die eigentlich wirklich? 30.01.2002 16.1.2002 H.-F. GRAF (Hamburg/D) A.
    [Show full text]
  • Der Mythos Der Deutschen Atombombe
    Langsame oder schnelle Neutronen? Der Mythos der deutschen Atombombe Prof. Dr. Manfred Popp Karlsruher Institut für Technologie Ringvorlesung zum Gedächtnis an Lise Meitner Freie Universität Berlin 29. Oktober 2018 In diesem Beitrag geht es zwar um Arbeiten zur Kernphysik in Deutschland während des 2.Weltkrieges, an denen Lise Meitner wegen ihrer Emigration 1938 nicht teilnahm. Es geht aber um das Thema Kernspaltung, zu dessen Verständnis sie wesentliches beigetragen hat, um die Arbeit vieler, gut vertrauter, ehemaliger Kollegen und letztlich um das Schicksal der deutschen Physik unter den Nationalsozialisten, die ihre geistige Heimat gewesen war. Da sie nach dem Abwurf der Bombe auf Hiroshima auch als „Mutter der Atombombe“ diffamiert wurde, ist es ihr gewiss nicht gleichgültig gewesen, wie ihr langjähriger Partner und Freund Otto Hahn und seine Kollegen während des Krieges mit dem Problem der möglichen Atombombe umgegangen sind. 1. Stand der Geschichtsschreibung Die Geschichtsschreibung über das deutsche Uranprojekt 1939-1945 ist eine Domäne amerikanischer und britischer Historiker. Für die deutschen Geschichtsforscher hatte eines der wenigen im Ergebnis harmlosen Kapitel der Geschichte des 3. Reiches keine Priorität. Unter den alliierten Historikern hat sich Mark Walker seit seiner Dissertation1 durchgesetzt. Sein Beitrag zur Geschichte der Kaiser Wilhelm-Gesellschaft im 3. Reich beginnt mit den Worten: „The Kaiser Wilhelm Institute for Physics is best known as the place where Werner Heisenberg worked on nuclear weapons for Hitler.“2 Im Jahr 2016 habe ich zum ersten Mal belegt, dass diese Schlussfolgerung auf Fehlinterpretationen der Dokumente und auf dem Ignorieren physikalischer Fakten beruht.3 Seit Walker gilt: Nicht an fehlenden Kenntnissen sei die deutsche Atombombe gescheitert, sondern nur an den ökonomischen Engpässen der deutschen Kriegswirtschaft: „An eine Bombenentwicklung wäre [...] auch bei voller Unterstützung des Regimes nicht zu denken gewesen.
    [Show full text]
  • People and Things
    People and things such a Subtle effect as the disap­ provide a good surface-to-volume LEP authorization ratio, and then selectively to observe pearance of bag boundaries. Correla­ the surface. Weakly interacting tion measurements may be required, The project to build a large elec­ probes are called for. Most of our such as searches for changes in the tron-positron storage ring, LEP, at considerations must then deal with small mass lepton pair spectra, or in CERN already had the backing of photons, or virtual photons ob­ the identical particle interference the twelve CERN Member States served as lepton pairs. measurements. (see December 1981 issue, page The emitted photons and leptons, Since we have only rough esti­ 439), but threç votes remained for example, could be used in an mates of the transition temperature, subject to conditions. At a CERN attempt to observe the phase transi­ only rather crude notions of 'temper­ Council meeting in December this tion. The energy of the nuclei is var­ ature' in collisions, and as yet no 'ad referendum' was lifted by the ied, and the temperature indicated by direct data relevant to the tempera­ Netherlands, Norway and Sweden. the transverse momentum and mass ture inside nuclear collisions, we can­ The LEP project thus has the un­ distribution is determined. The rate not say anything precise about the conditional support of all Member of photon emission is then deter­ energies necessary to produce tem­ States. mined as a function of temperature. peratures above the critical tempera­ Meanwhile the LEP project team As the transition temperature is ture.
    [Show full text]
  • Stanford Linear Accelerator Center
    STANFORD LINEAR ACCELERATOR CENTER Winter 1997, Vol. 27, No.4 A PERIODICAL OF PARTICLE PHYSICS Fermilab Media Services Visual WINTER 1997 VOL. 27, NUMBER 4 FOREWORD 2 Burton Richter Editors RENE DONALDSON, BILL KIRK Contributing Editors FEATURES MICHAEL RIORDAN, GORDON FRASER JUDY JACKSON, PEDRO WALOSCHEK 4 INTERNATIONAL COOPERATION: Editorial Advisory Board THE SINE QUA NON FOR THE FUTURE GEORGE BROWN, LANCE DIXON OF HIGH ENERGY PHYSICS JOEL PRIMACK, NATALIE ROE The DOE’s new Associate Director of High ROBERT SIEMANN, GEORGE TRILLING Energy and Nuclear Physics discusses the KARL VAN BIBBER promise and problems of international Illustrations scientific collaboration. TERRY ANDERSON S. Peter Rosen Distribution 12 RETROSPECTIVES ON INTERNATIONAL CRYSTAL TILGHMAN COLLABORATION Four different perspectives on international collaboration in high energy physics are presented. Gordon Fraser The Beam Line is published quarterly by Hirotaka Sugawara the Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309. Alexander N. Skrinsky Telephone: (650) 926-2585 INTERNET: [email protected] Zhou Guang-Zhao FAX: (650) 926-4500 Issues of the Beam Line are accessible electronically on the World Wide Web at http://www.slac.stanford.edu/ 20 U.S. COLLABORATION pubs/beamline. SLAC is operated by Stanford University ON THE LHC PROJECT under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the A member of the U.S. collaboration, who has policy of the Stanford Linear Accelerator Center. been involved since its beginnings, discusses the history of the Large Hadron Collider and its importance to U.S. particle physics. George Trilling 27 THE ATLAS INNER DETECTOR The U.S.
    [Show full text]
  • A Crisis in Postgenomic Nomenclature
    S CIENCE’ S C OMPASS 65 7. A.W. Segal et al., Nature 290, 406 (1981). 13. S. J. Klebanoff, J. Bacteriol. 95, 2131 (1968). 20. C. Spiegelhalder et al., Infect. Immun. 61, 5315 64 8. L. M. Henderson, J. B. Chappell, O. T. G. Jones, 14. J. M. Albrich, J. K. Hurst, FEBS Lett. 144, 157 (1982). (1993). Biochem. J. 246, 325 (1987). 15. J. P. Gaut et al., Proc. Natl. Acad. Sci. U.S.A. 98, 11961 21. P. R. Langford, B. M. Loynds, J. S. Kroll, Infect. Immun. 63 9. Nanda, S. Grinstein, Proc. Natl. Acad. Sci. U.S.A. 88, (2001). 64, 5035 (1997). 62 10816 (1991). 16. A. J. Kettle, C. C. Winterbourn, Biochemistry 40, 22. B. L. Beaman et al., Infect. Immun. 47, 135 (1985). 61 10. G. L. Mandell, E. W. Hook, J. Bacteriol. 100, 531 10204 (2001). 23. L. Beaman, B. L. Beaman, Infect. Immun. 58, 3122 60 (1969). 17. M. B. Hampton, A. J. Kettle, C. C. Winterbourn, Infect. (1990). 11. R. B. Johnston Jr., R.L. Baehner, Blood 35, 350 Immun. 64, 3512 (1996). 24. A. A.Voetman et al., J. Clin. Invest. 67, 1541 (1981). 59 (1970). 18. E. Kusunose et al., J. Biochem. 80, 1343 (1994). 25. G. L. Mandell, Infect. Immun. 9, 337 (1974). 58 12. C. E. Gerber et al., Blood 98, 3097 (2001). 19. B. L. Beaman et al., J. Biol. Chem. 258, 91 (1994). 26. J.Weiss et al., J. Clin. Invest. 69, 959 (1982). 57 56 PERSPECTIVES: GENOMICS 55 fine a cell’s glycosylome at time zero, 54 and seconds later the cell undergoes pro- 53 A Crisis in Postgenomic grammed cell death, its carbohydrate 52 moieties are likely to give up the ghost 51 nonuniformly, with some persisting to 50 Nomenclature the last.
    [Show full text]
  • People and Things
    People and things mate the yield of isolated neutral A special colloquium at DESY, Ham­ On people hadrons. burg, on 16 January marked the 80th However isolated photons could birthday of Willibald Jentschke, who also come from some new mecha­ Among those receiving US National was the first Director of DESY and nism. Together, the data from all LEP Medals of Science from President served as CERN's Director General experiments shows no evidence for George Bush last year were Glenn T. from 1971-75. Speakers included new processes, but experimentalists Seaborg, associate director of the W.K.H. Panofsky of Stanford on Willi Lawrence Berkeley Laboratory, and were encouraged to continue their Jentschke and the Evolution of Elec­ Steven Weinberg of the University of 0 search. It was emphasized that for tron Machines . Higgs particles heavier than 60 GeV, Texas, Austin. The medals are the the decay of a Z into a Higgs and a nation's highest award for scientific photon is expected to be the domi­ achievement. nant production channel for the Higgs In memory of Edoardo Amaldi at current LEP energies, and addi­ Distinguished Italian theorist Gian tional mechanisms (compositeness, On 25 January Italian physicists Carlo Wick is one of this year's re­ supersymmetry or technicolour) may gathered in Piacenza, accepting an cipients, along with actress Caterina show up eventually. invitation from the local authorities to Boratto and publisher Guilio Einandi, Extolling the virtues of 'photons as honour the memory of distinguished of the Silver Plate Award of 7/ Circolo QCD snipers' in his conclusion, physicist and CERN founding father delta Stampa di Torino', Awarded an­ Ronald Kleiss summarized how the Edoardo Amaldi, who died on 5 De­ nually since 1980, these prizes rec­ workshop had served its purpose in cember 1989.
    [Show full text]
  • DESY Lecture Series in Memory of Professor Dr. Willibald Jentschke Professor Dr
    DESY Lecture Series in Memory of Professor Dr. Willibald Jentschke Professor Dr. Helmut Dosch Max Planck Institute for Metals Research Stuttgart, Germany Grand Challenges for Megafacilities" December 4, 2008 17.00 h DESY Auditorium Professor W. Jentschke, The most demanding challenges in science and in the founding father of DESY, was appointed all key technologies of tomorrow can only be Professor of Physics at Hamburg University in mastered by the bold exploration of nanospace. The treasure quest encompasses answers to vexing 1955. In this position, his aim was to establish open problems as What is the nature of dark matter a first-rate facility of high energy physics in and dark energy?, In how many dimensions do Germany, leading to the foundation we live?, Do we understand complex systems?, of DESY in 1959. Can we successfully combine concepts from physics and biology? or Can we control quantum states? Until the end of 1970 he was head of the DESY Progress in information technologies, medicine, as well as in environmentally friendly energy and Directorate. From 1971 to 1975 he was Director transport strategies will critically depend on the General of CERN, the European Laboratory for development of novel nanomaterials with new Particle Physics. After his retirement he functions. These highly competitive investigations maintained an active interest in particle of the different areas of nanospace require large physics, and in DESY and CERN, until his death scale facilities which provide microscopes with in 2002, shortly after his 90th birthday. His the proper spatial and temporal resolution. In this lecture, Professor Dosch will address some wisdom, his vision and his great personality in of the Grand Challenges in Science and discuss guiding DESY will always be remembered.
    [Show full text]
  • Objective List of German and Austrian Scientists. (1,600 “Scientists”) Joint Intelligence Objectives Agency
    Objective List of German and Austrian Scientists. (1,600 “Scientists”) Joint Intelligence Objectives Agency. 2 January 1947. Name and Address Field Dr. Udo Adelsburger Crystal clocks & H. F. Heidelberg measurements Heinrich Adenstedt Jet Engines Remscheidt, Brunswick Prof. Dr. Arnold Agatz Marine Engineer Berlin-Zehlendorf West Hans Knirschweg 13 Dipl. Ing. Ahrens Tech. Designer of Stuttgart/Sindelfingen (AZ) Automobile bodies Gerhard E Aichinger Parachutes Wright Field, Ohio Dr. Leonard Alberts Hydro-carbons Army War College Washington, D.C. Dr. Wolfgang Alt CW Expert Gendorf, Bavaria Dr. Herbert Altwicker Production of Aircraft Biederscheld nr Dillenberg Equipment Dr. Otto Ambros CW Expert Gendorf, Bavaria Dr. Rudolph Maria Ammann Jet Engines Wright Field, Ohio Hans, Amtmann Aircraft Engineer Hamburg-Volksdorf, Ahrens-Burgerstr. 98 Hans Amtsberg Shipbuilding and Berlin, Steglitz Model Basins Kissingerstr. 9 Director W. Anders Welding Research Halle/Saale-Throtha 1 Wilhelm Angele Guided Missiles Fort Bliss, Texas Prof. Dr. Ernst Von Angerer Atomic Spectroscopist Munich 23, Gieslastr. 17 I Herrmann Anscheultz Aircraft Munich 25, Valleystr. 47 Dipl. Ing. Antz Aircraft Development Berlin Ing. Erich Apel Manufacturing Engineer Creya bei Bleicherode Suedharz (RZ) Baron Manfred Von Ardenne Nuclear Physics Dr. Gottfried Max Arnold Supersonic Measures Wright Field, Ohio Dr. Carol Aschenbrenner Aerial Photography Wright Field, Ohio Dr. Volker Aschoff Acoustic Torpedoes Gdynia, Poland and Homing Devices Walter Attman Glass Expert Von Aulock Torpedoes Gotenhafen Herbert Feliya Axter Guided Missiles Fort Bliss, Texas Dr. Aufmkampf Meteorology Ainring Airport, near Salzburg Baars (FNU) Batteries Westfalon Dr. Bachem Electronics Konstanz Dipl. Ing. Erich Bachem Aeronautical Engineering Walosee, Wuertt 2 Dr. Erich Bagge Gas Turbines Brunswick Erich K.
    [Show full text]
  • Biographies of JRC Honorary Fellows
    Biographies of JRC Honorary Fellows (of those attending the ceremony on 25 September 2017 in person, see Annex for full list) (in alphabetical order) 1. Spyros P. Arsenis For his achievements in the application of Statistical Science to the modelling of fraud detection, monitoring and control Spyros Arsenis studied Mathematics and Statistics at Columbia University (B.A. Cum Laude 1975, M.A. 1977) and MIT (Ph.D., 1985). He started his professional career at the University of Crete and the Foundation for Research and Technology (FORTH), as an adjunct Scientist. In 1990, he joined the JRC to work in Statistics on reliability data, under the Reactor Safety program. From 1995, Dr. Arsenis’ Statistics work focused on the protection of the EU and Member States’ budgets from financial fraud. He took the lead on a series of administrative agreements between the JRC and the European Anti-Fraud Office (OLAF). The scope of this work grew to include: Commission internal data; publicly available trade data; customs declarations owned by customs services in the Member States; and data on the production and trade of rough diamonds from Kimberley Process participants. While the variety and extent of problems of fraud detection, monitoring and control are formidable, Dr. Arsenis and his colleagues’ work demonstrates that the application of Statistical Science to the modelling of these problems and the use of statistical results to guide investigations can bring infinite added value, benefiting the EU, Member States and international society as a whole. His findings have been reported in more than sixty technical reports, and procedures developed have enriched the JRC’s web based anti-fraud resource THESEUS (https://theseus.jrc.ec.europa.eu/) of which Dr.
    [Show full text]