A Crisis in Postgenomic Nomenclature

Total Page:16

File Type:pdf, Size:1020Kb

A Crisis in Postgenomic Nomenclature S CIENCE’ S C OMPASS 65 7. A.W. Segal et al., Nature 290, 406 (1981). 13. S. J. Klebanoff, J. Bacteriol. 95, 2131 (1968). 20. C. Spiegelhalder et al., Infect. Immun. 61, 5315 64 8. L. M. Henderson, J. B. Chappell, O. T. G. Jones, 14. J. M. Albrich, J. K. Hurst, FEBS Lett. 144, 157 (1982). (1993). Biochem. J. 246, 325 (1987). 15. J. P. Gaut et al., Proc. Natl. Acad. Sci. U.S.A. 98, 11961 21. P. R. Langford, B. M. Loynds, J. S. Kroll, Infect. Immun. 63 9. Nanda, S. Grinstein, Proc. Natl. Acad. Sci. U.S.A. 88, (2001). 64, 5035 (1997). 62 10816 (1991). 16. A. J. Kettle, C. C. Winterbourn, Biochemistry 40, 22. B. L. Beaman et al., Infect. Immun. 47, 135 (1985). 61 10. G. L. Mandell, E. W. Hook, J. Bacteriol. 100, 531 10204 (2001). 23. L. Beaman, B. L. Beaman, Infect. Immun. 58, 3122 60 (1969). 17. M. B. Hampton, A. J. Kettle, C. C. Winterbourn, Infect. (1990). 11. R. B. Johnston Jr., R.L. Baehner, Blood 35, 350 Immun. 64, 3512 (1996). 24. A. A.Voetman et al., J. Clin. Invest. 67, 1541 (1981). 59 (1970). 18. E. Kusunose et al., J. Biochem. 80, 1343 (1994). 25. G. L. Mandell, Infect. Immun. 9, 337 (1974). 58 12. C. E. Gerber et al., Blood 98, 3097 (2001). 19. B. L. Beaman et al., J. Biol. Chem. 258, 91 (1994). 26. J.Weiss et al., J. Clin. Invest. 69, 959 (1982). 57 56 PERSPECTIVES: GENOMICS 55 fine a cell’s glycosylome at time zero, 54 and seconds later the cell undergoes pro- 53 A Crisis in Postgenomic grammed cell death, its carbohydrate 52 moieties are likely to give up the ghost 51 nonuniformly, with some persisting to 50 Nomenclature the last. At what point in this process do 49 Stanley Fields and Mark Johnston we define the glycosylome? 48 To circumvent these difficulties and 47 e all know what a genome is, and century old, and “nucleosome” and “repli- others sure to emerge, we propose some 46 we think we understand the term some” originated more than a quarter cen- simple rules. First, considerable precision 45 Wproteome, but can anyone tell us tury ago (1). Even “spliceosome” and “pro- can be gained by a more circumscribed 44 the constituents of a functome? As the teasome” are approaching two decades of representation of the ’ome’s constituents, 43 availability of complete genome sequences service. This relatively modest growth in for example, phospholipidome rather than 42 has spawned analyses of entire comple- the application of the suffix ’some contrasts lipidome; inositol phospholipidome 41 ments of proteins, RNAs, metabolites, and with that for ’ome. Although “genome” was rather than phospholipidome. Of course, 40 other cellular constituents, there has arisen coined by German scientists (“genom”) in this has the potential to be abused and to 39 a need for a terminology expansive enough 1920 and first used in English in 1930 (1), lead to absurdly finer subdivisions. For 38 to encompass the global scale of the data. none of the other ’omes can lay claim to example, do we want the transcription fac- 37 A sensible suffix was appropriated for this more than a few years torome to be subdivid- 36 purpose, but now is proliferating uncon- of history. ed into the transcrip- 35 trollably: genome, proteome, transcrip- There are two un- tional activatorome 34 tome, metabolome, interactome, even phe- derappreciated and so and the transcriptional 33 nome, with many more ’omes sure to be in far unresolved predica- repressorome? Does 32 various stages of gestation. Perhaps it is not ments with the ’ome not the transcription- 31 completely coincidental that ’ome is also terminology. First, there al activatorome then 30 the anglicized form of ’oma (1), commonly is a problem with its include the zincfin- 29 used to name such unwelcome intrusions scope. Whereas the ex- gerome, which itself 28 as sarcoma, lipoma, and fibroma. This tent of the genome is Image not includes the Cys-His 27 metastatic growth of the ’ome is spreading clear (all the genetic zincfingerome and the 26 imprecision and confusion. Meanwhile, re- material of a cell), what available for Cys-Cys zincfinger- 25 search summaries in the front of major sci- constitutes a transcrip- online use. ome? To avoid this pit- 24 entific weeklies with titles like ’Ome Sweet tome is not so obvious. fall, we propose that 23 ’Ome, and ’Ome…’Ome…’Ome: The Ge- Is it just the mRNAs, the minimum number 22 nomicist’s New Mantra, and our personal or does it include the of similar cellular con- 21 favorite, The ’Ome: A Pièce de Résistance, transcripts produced stituents that consti- 20 only serve to confuse us further. Because a by RNA polymerases I tute an ’ome be clearly 19 clear and widely accepted nomenclature is and III? What about defined. Seven or eight 18 essential for the health of any discipline, a transcripts that end up seems to us a conser- 17 systematic solution to this problem is ur- in the enzymes telom- vative yet valuable cut- 16 gently needed. erase or RNaseP, or in off. Thus, there can be 15 It is often instructive to look to the past ribonucleoprotein par- no “nucleicacidome” 14 for guidance. A now familiar nomenclature ticles such as snRNPs? (there’s only DNA and 13 grew up around the related suffix ’some (for The precise constituents of an ’ome are RNA, after all), but there certainly is a 12 which ’ome is sometimes mistaken), mean- often not well specified. “nucleotideome” (A, T, G, C, U, I, plus 11 ing “body,” which has been used to name A second, and much more severe, myriad modified purines and pyrimidines); 10 various intracellular particles. “Chromo- problem is the conditional nature of no “actinome,” of course (humans have 9 some” dates back more than 100 years, “ri- some ’omes. The genome—notwith- only six actin isoforms), but definitely a 8 bosome” and “lysosome” are nearly half a standing the occasional hop of a transpo- “tubulome” (multiple α and β tubulin iso- 7 son or rearrangement of an immunoglob- types, not to mention γ, δ, ε, ζ, and η 6 S. Fields is in the Department of Genome Sciences and ulin gene—is a relatively fixed entity, tubulins). 5 Department of Medicine, Howard Hughes Medical In- and reasonable people can agree on its Second, it would be helpful if the state 4 stitute, University of Washington, Seattle, WA 98195, definition. But the proteome present in a of the cells for which an ’ome is defined 3 USA. M. Johnston is in the Department of Genetics, Washington University Medical School, St. Louis, MO cell at one moment will differ drastically were apparent in the nomenclature. If ini- 2 63110, USA. E-mail: [email protected], from that in the same cell moments after tially we use basic parameters like temper- 1 CREDIT: JOE SUTLIFF [email protected] it has been heated to 65°C. Or, if we de- ature, pH, cell cycle stage, and subcellular www.sciencemag.org SCIENCE VOL 296 26 APRIL 2002 671 S CIENCE’ S C OMPASS 65 localization, we can obtain a definition Enzyme Commission (E.C.)–style nomen- Which brings us to a final thought. As bi- 64 such as, “the 37°-7.4-G1-Golgi-N-but-not- clature should be established that allows ologists approach a definition of all of the 63 O-linked glycosylome.” This system has the incorporation of as many specifica- various machines that carry out life’s basic 62 enormous versatility and can be suitably tions as needed. In this format, the particu- processes, we should be able to define the 61 expanded to incorporate other parameters, lar glycosylome mentioned above has been ultimate ’ome, the collection of all of these 60 including cell source, developmental tim- provisionally designated the 4.7.5.3.8ome. machines: the “someome.” Others might 59 ing, and much more. Perhaps at first this We expect that these numerical names, af- prefer to call this the “omesome,” given 58 may seem a bit cumbersome. But please ter a sufficient number of citations, will that it defines the machine comprising all 57 remember that this nomenclature is no become as familiar as many E.C. numbers. the ’omes. Either one is a vast improve- 56 more intricate than the (±)-N-methyl-γ-[4- The adoption of our simplified system ment over their imprecise and prosaic syn- 55 (trifluoromethyl)phenoxy]-benzene- means that as new technologies emerge onym currently in wide use: the cell. 54 propanamine used so effectively by enabling the assay of yet more cellular Reference 53 chemists and many others. As a more constituents, the nomenclature is already 1. Oxford English Dictionary Online (Oxford Univ. Press, 52 wieldy alternative, we also propose that an in hand to deal with the discoveries. Oxford, UK, ed. 2, 2002). 51 50 RETROSPECTIVE 49 choice, not only for particle physics but al- 48 so for the future of synchrotron radiation. 47 Willibald Jentschke From 1971 to 1975, Jentschke served 46 as director general of CERN Laboratory I 45 (the original Meyrin site). He oversaw the 44 (1911–2002) exploitation of important new research in- 43 Albrecht Wagner vestments, notably the Intersecting Stor- 42 age Rings (ISR), high-intensity proton 41 illibald Jentschke, founder of Geneva. Soon after high-energy physics ex- beams, and an ambitious research program 40 Germany’s particle physics labo- periments with accelerated electrons began for neutrino physics. In 1973, this effort 39 Wratory DESY near Hamburg and at DESY, research with synchrotron radia- enabled physicists using the Gargamelle 38 former director general of CERN, passed tion, emitted by the electrons during accel- bubble chamber to discover the neutral 37 away on 11 March 2002, a few months af- eration, became the second strong research currents of the weak inter- 36 ter his 90th birthday.
Recommended publications
  • Wie Es Zur Gründung Des Instituts Für Hochenergiephysik Kam
    HEPHY-PUB-997 24 Nov. 2016 (rev. 19 Sep. 2017) Wie es zur Gründung des Instituts für Hochenergiephysik kam Winfried A. Mitaroff Institut für Hochenergiephysik der ÖAW, Wien ∗ Zusammenfassung Nach dem Beitritt Österreichs zur Europäischen Organisation für Kernforschung (CERN) im Jahr 1959 und bescheidenen Anfängen an der Universität Wien wurde 1966 mit der Gründung des Instituts für Hochenergiephysik (HEPHY) durch die Österreichische Akademie der Wissenschaften (ÖAW) der Grundlagenforschung auf dem Gebiet der experimentellen Teilchenphysik in unserem Land eine solide Entwicklungsmöglichkeit eröffnet. In den seither vergangenen 50 Jahren war das Institut im Rahmen internationaler Kollaborationen an einer Vielzahl von Experimenten an Großforschungsanlagen (vorwiegend, aber nicht ausschließlich, bei CERN) beteiligt – darunter auch an so bedeutenden, welche später zu Physik-Nobelpreisen geführt haben. Hierzu hat es wichtige Beiträge geleistet, insbesondere in den Bereichen Detektorentwicklung, Datenanalyse und Phänomenologie. Die vorliegende Studie zielt auf die Vorgeschichte, welche schließlich zur Institutsgründung führte. Als Quellen dienten Sitzungsprotokolle und Tätigkeitsberichte, Institutsbroschüren, Autobiografien, sowie persönliche Erinnerungen. Dieser Artikel stellt den ersten Teil eines Beitrags zur Monografie “175 Jahre Österreichische Akademie der Wissenschaften” (Wien 2022) dar, welcher die wissenschaftliche Institutsgeschichte bis zur Gegenwart beschreiben wird. 1 Einleitung Die Hochenergiephysik als selbständige Wissenschaftsdisziplin
    [Show full text]
  • Willibald Jentschke –
    European organization for nuclear research Willibald Jentschke – Willibald Jentschke founder of DESY and former Director"General of CERN passed away on March + on 18 December 1959. Jentschke became its first director and remained in this position until 1970. Jentschke served as Director-General of CERN Laboratory I – the original Meyrin site – from 1971–75. During the same period, John Adams was Director-General of the neighbouring Laboratory II, where the new SPS pro- ton synchrotron was being construct- ed. Having two Directors-General was an unusual and delicate situation, but to their eternal credit Jentschke and Adams handled it well. Jentschke oversaw the exploitation of important new investments, including an ambi- tious research programme for neutri- no physics. In 1973, this effort enabled physicists to discover the neutral cur- rents of the weak interaction. Faced with a major discovery, CERN was nervous. However, Jentschke ensured that the result went on record as one Born in Vienna, Willibald Jentschke of the Laboratory’s great achieve- obtained his Ph.D. in nuclear physics ments. at the age of 24. He continued working in this field in Vienna for many years. As Director-General of CERN In 1951, he became director of the Jentschke wrote in 1975: "I believe cyclotron laboratory at the University that we must base our future plans on of Illinois. When the University of international collaboration, certainly Hamburg offered him the chair for within Europe, or perhaps, if condi- experimental physics in 1955 he tions eventually permit, within a wider requested funds to create a modern context." This vision is now becoming research facility in Germany.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Veröffentlichungen Und Vorträge
    Veröffentlichungen und Vorträge Veröffentlichungen und Vorträge 287 288 DESY-Kolloquien Festkolloquium für Günter Wolf M. DERRICK (ANL Argonne/USA) The Physics Interplay between Hadron and Electron Facilities. 10 Jahre DESY Zeuthen R. PECCEI (UCLA/USA) Festkolloquium The Deep Inelastic Trail. 3.12.2002 A. WAGNER (DESY Hamburg/D) Begrüßung. DESY Lecture Series in Memory of Prof. Dr. W. Jentschke J. WANKA (Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg) W.K.H. PANOFSKY (Univ. Stanford/USA) Grußwort. The Danger Posed by Nuclear Weapons. 5.12.2002 H. SCHUNCK (BMBF, Berlin/D) Transformation oder Urknall – Physik in Deutschland 10 Jahre danach. V. SOERGEL (Univ. Heidelberg/D) Academic Training 1992 – DESY wird größer: Erinnerung an die Entstehung von DESY Zeuthen. U. GENSCH (DESY Zeuthen/D) P. SCHMÜSER (Univ. Hamburg/D) DESY Zeuthen heute. Basic Elements of Accelerator Physics. 18.–20.02.2002 C. SPIERING (DESY Zeuthen/D) Neutrinoastrophysik – Vom Baikalsee zum Südpol. G. WEIGLEIN (Univ. of Durham/GB) Electroweak Physics: Preparing for TESLA. D. ECKSTEIN (CERN Geneva/CH) 13.–15.05.2002 Struktur des Protons und die starke Kraft. V. MÜLLER (Astrophys. Inst. Potsdam/D) D. PLEITER (DESY Zeuthen/D) Astrophysics and Cosmology. Parallelrechner und Physik auf dem Gitter. 7./8.10.2002 J. ILLANA (Univ. Hamburg/D) Hunting for Precision at High Energies. S. RIEMANN (DESY Zeuthen/D) Vorträge – Physik bei TESLA – Ursprung der Masse. Innerbetriebliche Fortbildung Einführung in die Ausstellung: TESLA – Licht der Zukunft A. WAGNER (DESY Hamburg/D) S. SACK (Hamburg/D) Unternehmensberater – Was tun die eigentlich wirklich? 30.01.2002 16.1.2002 H.-F. GRAF (Hamburg/D) A.
    [Show full text]
  • Der Mythos Der Deutschen Atombombe
    Langsame oder schnelle Neutronen? Der Mythos der deutschen Atombombe Prof. Dr. Manfred Popp Karlsruher Institut für Technologie Ringvorlesung zum Gedächtnis an Lise Meitner Freie Universität Berlin 29. Oktober 2018 In diesem Beitrag geht es zwar um Arbeiten zur Kernphysik in Deutschland während des 2.Weltkrieges, an denen Lise Meitner wegen ihrer Emigration 1938 nicht teilnahm. Es geht aber um das Thema Kernspaltung, zu dessen Verständnis sie wesentliches beigetragen hat, um die Arbeit vieler, gut vertrauter, ehemaliger Kollegen und letztlich um das Schicksal der deutschen Physik unter den Nationalsozialisten, die ihre geistige Heimat gewesen war. Da sie nach dem Abwurf der Bombe auf Hiroshima auch als „Mutter der Atombombe“ diffamiert wurde, ist es ihr gewiss nicht gleichgültig gewesen, wie ihr langjähriger Partner und Freund Otto Hahn und seine Kollegen während des Krieges mit dem Problem der möglichen Atombombe umgegangen sind. 1. Stand der Geschichtsschreibung Die Geschichtsschreibung über das deutsche Uranprojekt 1939-1945 ist eine Domäne amerikanischer und britischer Historiker. Für die deutschen Geschichtsforscher hatte eines der wenigen im Ergebnis harmlosen Kapitel der Geschichte des 3. Reiches keine Priorität. Unter den alliierten Historikern hat sich Mark Walker seit seiner Dissertation1 durchgesetzt. Sein Beitrag zur Geschichte der Kaiser Wilhelm-Gesellschaft im 3. Reich beginnt mit den Worten: „The Kaiser Wilhelm Institute for Physics is best known as the place where Werner Heisenberg worked on nuclear weapons for Hitler.“2 Im Jahr 2016 habe ich zum ersten Mal belegt, dass diese Schlussfolgerung auf Fehlinterpretationen der Dokumente und auf dem Ignorieren physikalischer Fakten beruht.3 Seit Walker gilt: Nicht an fehlenden Kenntnissen sei die deutsche Atombombe gescheitert, sondern nur an den ökonomischen Engpässen der deutschen Kriegswirtschaft: „An eine Bombenentwicklung wäre [...] auch bei voller Unterstützung des Regimes nicht zu denken gewesen.
    [Show full text]
  • People and Things
    People and things such a Subtle effect as the disap­ provide a good surface-to-volume LEP authorization ratio, and then selectively to observe pearance of bag boundaries. Correla­ the surface. Weakly interacting tion measurements may be required, The project to build a large elec­ probes are called for. Most of our such as searches for changes in the tron-positron storage ring, LEP, at considerations must then deal with small mass lepton pair spectra, or in CERN already had the backing of photons, or virtual photons ob­ the identical particle interference the twelve CERN Member States served as lepton pairs. measurements. (see December 1981 issue, page The emitted photons and leptons, Since we have only rough esti­ 439), but threç votes remained for example, could be used in an mates of the transition temperature, subject to conditions. At a CERN attempt to observe the phase transi­ only rather crude notions of 'temper­ Council meeting in December this tion. The energy of the nuclei is var­ ature' in collisions, and as yet no 'ad referendum' was lifted by the ied, and the temperature indicated by direct data relevant to the tempera­ Netherlands, Norway and Sweden. the transverse momentum and mass ture inside nuclear collisions, we can­ The LEP project thus has the un­ distribution is determined. The rate not say anything precise about the conditional support of all Member of photon emission is then deter­ energies necessary to produce tem­ States. mined as a function of temperature. peratures above the critical tempera­ Meanwhile the LEP project team As the transition temperature is ture.
    [Show full text]
  • Stanford Linear Accelerator Center
    STANFORD LINEAR ACCELERATOR CENTER Winter 1997, Vol. 27, No.4 A PERIODICAL OF PARTICLE PHYSICS Fermilab Media Services Visual WINTER 1997 VOL. 27, NUMBER 4 FOREWORD 2 Burton Richter Editors RENE DONALDSON, BILL KIRK Contributing Editors FEATURES MICHAEL RIORDAN, GORDON FRASER JUDY JACKSON, PEDRO WALOSCHEK 4 INTERNATIONAL COOPERATION: Editorial Advisory Board THE SINE QUA NON FOR THE FUTURE GEORGE BROWN, LANCE DIXON OF HIGH ENERGY PHYSICS JOEL PRIMACK, NATALIE ROE The DOE’s new Associate Director of High ROBERT SIEMANN, GEORGE TRILLING Energy and Nuclear Physics discusses the KARL VAN BIBBER promise and problems of international Illustrations scientific collaboration. TERRY ANDERSON S. Peter Rosen Distribution 12 RETROSPECTIVES ON INTERNATIONAL CRYSTAL TILGHMAN COLLABORATION Four different perspectives on international collaboration in high energy physics are presented. Gordon Fraser The Beam Line is published quarterly by Hirotaka Sugawara the Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309. Alexander N. Skrinsky Telephone: (650) 926-2585 INTERNET: [email protected] Zhou Guang-Zhao FAX: (650) 926-4500 Issues of the Beam Line are accessible electronically on the World Wide Web at http://www.slac.stanford.edu/ 20 U.S. COLLABORATION pubs/beamline. SLAC is operated by Stanford University ON THE LHC PROJECT under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the A member of the U.S. collaboration, who has policy of the Stanford Linear Accelerator Center. been involved since its beginnings, discusses the history of the Large Hadron Collider and its importance to U.S. particle physics. George Trilling 27 THE ATLAS INNER DETECTOR The U.S.
    [Show full text]
  • People and Things
    People and things mate the yield of isolated neutral A special colloquium at DESY, Ham­ On people hadrons. burg, on 16 January marked the 80th However isolated photons could birthday of Willibald Jentschke, who also come from some new mecha­ Among those receiving US National was the first Director of DESY and nism. Together, the data from all LEP Medals of Science from President served as CERN's Director General experiments shows no evidence for George Bush last year were Glenn T. from 1971-75. Speakers included new processes, but experimentalists Seaborg, associate director of the W.K.H. Panofsky of Stanford on Willi Lawrence Berkeley Laboratory, and were encouraged to continue their Jentschke and the Evolution of Elec­ Steven Weinberg of the University of 0 search. It was emphasized that for tron Machines . Higgs particles heavier than 60 GeV, Texas, Austin. The medals are the the decay of a Z into a Higgs and a nation's highest award for scientific photon is expected to be the domi­ achievement. nant production channel for the Higgs In memory of Edoardo Amaldi at current LEP energies, and addi­ Distinguished Italian theorist Gian tional mechanisms (compositeness, On 25 January Italian physicists Carlo Wick is one of this year's re­ supersymmetry or technicolour) may gathered in Piacenza, accepting an cipients, along with actress Caterina show up eventually. invitation from the local authorities to Boratto and publisher Guilio Einandi, Extolling the virtues of 'photons as honour the memory of distinguished of the Silver Plate Award of 7/ Circolo QCD snipers' in his conclusion, physicist and CERN founding father delta Stampa di Torino', Awarded an­ Ronald Kleiss summarized how the Edoardo Amaldi, who died on 5 De­ nually since 1980, these prizes rec­ workshop had served its purpose in cember 1989.
    [Show full text]
  • DESY Lecture Series in Memory of Professor Dr. Willibald Jentschke Professor Dr
    DESY Lecture Series in Memory of Professor Dr. Willibald Jentschke Professor Dr. Helmut Dosch Max Planck Institute for Metals Research Stuttgart, Germany Grand Challenges for Megafacilities" December 4, 2008 17.00 h DESY Auditorium Professor W. Jentschke, The most demanding challenges in science and in the founding father of DESY, was appointed all key technologies of tomorrow can only be Professor of Physics at Hamburg University in mastered by the bold exploration of nanospace. The treasure quest encompasses answers to vexing 1955. In this position, his aim was to establish open problems as What is the nature of dark matter a first-rate facility of high energy physics in and dark energy?, In how many dimensions do Germany, leading to the foundation we live?, Do we understand complex systems?, of DESY in 1959. Can we successfully combine concepts from physics and biology? or Can we control quantum states? Until the end of 1970 he was head of the DESY Progress in information technologies, medicine, as well as in environmentally friendly energy and Directorate. From 1971 to 1975 he was Director transport strategies will critically depend on the General of CERN, the European Laboratory for development of novel nanomaterials with new Particle Physics. After his retirement he functions. These highly competitive investigations maintained an active interest in particle of the different areas of nanospace require large physics, and in DESY and CERN, until his death scale facilities which provide microscopes with in 2002, shortly after his 90th birthday. His the proper spatial and temporal resolution. In this lecture, Professor Dosch will address some wisdom, his vision and his great personality in of the Grand Challenges in Science and discuss guiding DESY will always be remembered.
    [Show full text]
  • Objective List of German and Austrian Scientists. (1,600 “Scientists”) Joint Intelligence Objectives Agency
    Objective List of German and Austrian Scientists. (1,600 “Scientists”) Joint Intelligence Objectives Agency. 2 January 1947. Name and Address Field Dr. Udo Adelsburger Crystal clocks & H. F. Heidelberg measurements Heinrich Adenstedt Jet Engines Remscheidt, Brunswick Prof. Dr. Arnold Agatz Marine Engineer Berlin-Zehlendorf West Hans Knirschweg 13 Dipl. Ing. Ahrens Tech. Designer of Stuttgart/Sindelfingen (AZ) Automobile bodies Gerhard E Aichinger Parachutes Wright Field, Ohio Dr. Leonard Alberts Hydro-carbons Army War College Washington, D.C. Dr. Wolfgang Alt CW Expert Gendorf, Bavaria Dr. Herbert Altwicker Production of Aircraft Biederscheld nr Dillenberg Equipment Dr. Otto Ambros CW Expert Gendorf, Bavaria Dr. Rudolph Maria Ammann Jet Engines Wright Field, Ohio Hans, Amtmann Aircraft Engineer Hamburg-Volksdorf, Ahrens-Burgerstr. 98 Hans Amtsberg Shipbuilding and Berlin, Steglitz Model Basins Kissingerstr. 9 Director W. Anders Welding Research Halle/Saale-Throtha 1 Wilhelm Angele Guided Missiles Fort Bliss, Texas Prof. Dr. Ernst Von Angerer Atomic Spectroscopist Munich 23, Gieslastr. 17 I Herrmann Anscheultz Aircraft Munich 25, Valleystr. 47 Dipl. Ing. Antz Aircraft Development Berlin Ing. Erich Apel Manufacturing Engineer Creya bei Bleicherode Suedharz (RZ) Baron Manfred Von Ardenne Nuclear Physics Dr. Gottfried Max Arnold Supersonic Measures Wright Field, Ohio Dr. Carol Aschenbrenner Aerial Photography Wright Field, Ohio Dr. Volker Aschoff Acoustic Torpedoes Gdynia, Poland and Homing Devices Walter Attman Glass Expert Von Aulock Torpedoes Gotenhafen Herbert Feliya Axter Guided Missiles Fort Bliss, Texas Dr. Aufmkampf Meteorology Ainring Airport, near Salzburg Baars (FNU) Batteries Westfalon Dr. Bachem Electronics Konstanz Dipl. Ing. Erich Bachem Aeronautical Engineering Walosee, Wuertt 2 Dr. Erich Bagge Gas Turbines Brunswick Erich K.
    [Show full text]
  • 1 Die Gr ¨Undung Des Forschungszentrums DESY
    1 1 Die Grundung¨ des Forschungszentrums DESY Die Geschichte beginnt im Jahr 1955. Die wissenschaftspolitischen undaußeren ¨ Umst¨ande waren der Gr¨undung eines gr¨oßeren wissenschaftlichen Unternehmens g¨unstig: – Deutschland erhielt 1955 einen Teil seiner Souver¨anit¨at zur¨uck. Damit fiel das Verbot, kernphysikalische Forschungen zu betreiben. – Das neugegr¨undete Bundesministerium f¨ur Atomkernenergie1) (BMAt) unter Franz Josef Strauss hatte Geld und war zu großen Unternehmungen bereit. – Die Kernphysik hatte ein hohes Ansehen und es bestand in Deutschland ein großes Bed¨urfnis, den Vorsprung des Auslands auf diesem aktuellen For- schungsgebiet aufzuholen. – Die 1954 erfolgte Gr¨undung des CERN, des europ¨aischen Zentrums f¨ur sub- atomare Forschung, konnte als Beispiel und Anreiz dienen. Die damit gebotene Chance zu ergreifen – dazu bedurfte es jedoch einer außer- gew¨ohnlichen Pers¨onlichkeit. Sie trat auf in Gestalt eines 44-j¨ahrigen, aus Wien stam- menden Kernphysikers, der in den USA Karriere gemacht und 1954 einen Ruf als Professor an die Universit¨at Hamburg erhalten hatte: Willibald Jentschke. Er war mit den Großprojekten der Forschung in den USA vertraut, war er doch selbst dort in lei- tender Funktion t¨atig gewesen. Hamburg konnte ihn nur reizen, wenn er hier ebenfalls etwas Neues, Großes w¨urde aufbauen k¨onnen. Dass ihm dies gelingen sollte, war ne- ben seiner fachlichen Kompetenz und dem Ehrgeiz, in der vordersten Liga der Physik mitzuspielen, ganz besonders auch seiner Hartn¨ackigkeit und Unverfrorenheit gepaart mit geschickt eingesetztem Wiener Charme zu verdanken. Die n¨aheren Hintergr¨unde und Einzelheiten sind in dem Buch von C. Habfast [1] geschildert; sie werden hier gek¨urzt wiedergegeben.
    [Show full text]
  • Biographies of JRC Honorary Fellows
    Biographies of JRC Honorary Fellows (of those attending the ceremony on 25 September 2017 in person, see Annex for full list) (in alphabetical order) 1. Spyros P. Arsenis For his achievements in the application of Statistical Science to the modelling of fraud detection, monitoring and control Spyros Arsenis studied Mathematics and Statistics at Columbia University (B.A. Cum Laude 1975, M.A. 1977) and MIT (Ph.D., 1985). He started his professional career at the University of Crete and the Foundation for Research and Technology (FORTH), as an adjunct Scientist. In 1990, he joined the JRC to work in Statistics on reliability data, under the Reactor Safety program. From 1995, Dr. Arsenis’ Statistics work focused on the protection of the EU and Member States’ budgets from financial fraud. He took the lead on a series of administrative agreements between the JRC and the European Anti-Fraud Office (OLAF). The scope of this work grew to include: Commission internal data; publicly available trade data; customs declarations owned by customs services in the Member States; and data on the production and trade of rough diamonds from Kimberley Process participants. While the variety and extent of problems of fraud detection, monitoring and control are formidable, Dr. Arsenis and his colleagues’ work demonstrates that the application of Statistical Science to the modelling of these problems and the use of statistical results to guide investigations can bring infinite added value, benefiting the EU, Member States and international society as a whole. His findings have been reported in more than sixty technical reports, and procedures developed have enriched the JRC’s web based anti-fraud resource THESEUS (https://theseus.jrc.ec.europa.eu/) of which Dr.
    [Show full text]