Testing the Phylogenetic Stability of Early Tetrapods

Total Page:16

File Type:pdf, Size:1020Kb

Testing the Phylogenetic Stability of Early Tetrapods J. theor. Biol. (1999) 200, 343}344 Article No. jtbi.1999.0999, available online at http://www.idealibrary.com on LETTER TO THE EDITOR Testing the Phylogenetic Stability of Early Tetrapods Clack (1998) described Eucritta melanolimnetes, average stability of all triplets is a measure of an Early Carboniferous tetrapod, and used parsi- overall phylogenetic stability. Leaf and phylo- mony to investigate its evolutionary relationships genetic stability measures can utilize any nume- to other early tetrapods. Through comparison of rical technique for assessing the support for a most parsimonious tree and nine trees of one phylogenetic relationships. Here, we use a mea- additional step in length, Clack concluded that sure based on the widely used technique of boot- &&The phylogeny from the current data set is not strapping (Felsenstein, 1985). The bootstrap particularly robust'' and claimed that &&This in- proportion (BP) of any phylogenetic hypothesis stability undoubtedly results from the extreme is the proportion of bootstrap trees that include degree of character con#ict that Eucritta pres- the hypothesis (or a weighted proportion in the ents.'' We have developed measures of leaf and case of multiple trees from a single bootstrap overall phylogenetic stability that allow such replicate). There are three possible 3-taxon state- claims about the impact of individual leaves to be ments for each triplet. The measure of triplet tested. stability used here is the absolute di!erence be- Phylogenetic trees represent hypotheses of tween the BPs of the two best-supported 3-taxon evolutionary relationships for a set of terminal statements for the triplet. taxa or leaves. Most studies of the robustness of We reanalysed the data from Clack (1998) with phylogenetic trees focus on the support for, or uninformative characters removed. Bootstrap- stability of, clades. However, trees can also be ping was performed using PAUP 3.1.1 (Swo!ord, thought of as collections of less inclusive hy- 1993) with 500 replicates, 10 random addition potheses of phylogenetic relationships, such as sequences and TBR branch swapping. Leaf and 3-taxon statements, with implications for the phylogenetic stabilities were determined using assessment of support (Wilkinson, 1994). For RadCon (Thorley and Page, 1999). Two leaves, example, a single unstable leaf can result in clades Crassigyrinus and =hatcheeria, are less stable with minimum robustness despite strong support than Eucritta (Fig. 1). Interestingly, earlier au- for the phylogenetic relationships of the remain- thors, albeit in reference to earlier reconstruc- ing leaves (Wilkinson, 1996). Measures of leaf tions, described these leaves as &&uniquely stability allow the contribution of each leaf to primitive and aberrant'' (Panchen, 1985) and of overall phylogenetic stability to be determined. &&uncertain phylogenetic a$nities'' (Lombard and The rationale for the measures is very simple. Bolt, 1995). The phylogenetic relationships of a set of leaves Although Crassigyrinus and =hatcheeria are are a function of the relationships among each less stable than Eucritta, it is possible that their subset of three leaves (triplet). The support for instability is due to character con#ict introduced the relationships within each triplet provides a by Eucritta. In order to test the impact of the measure of the stability of that triplet. Stable and character data for individual leaves on overall unstable leaves will tend to occur in stable and phylogenetic stability we compared the stabilities unstable triplets, respectively. The average stabil- of all triplets when the leaf is not included in the ity of the triplets including a leaf provides a analysis with their stabilities when the leaf is measure of the stability of that leaf. Similarly, the included. Triplet stability measures when the leaf 0022}5193/99/019343#02 $30.00/0 ( 1999 Academic Press 344 LETTER TO THE EDITOR phylogenetic hypotheses. For example, they can be used to identify unstable and potentially prob- lematic leaves and they enhance our capacity to test claims regarding the in#uence of speci"c leaves. In this case, our results demonstrate that Crassigyrinus and =hatcheeria are the most un- stable leaves in Clack's (1998) phylogeny and that its overall instability is neither solely nor prim- arily due to Eucritta. JOSEPH L. THORLEY School of Biological Sciences, ;niversity of Bristol, Bristol, BS81;G, ;.K. and Department of Zoology, ¹he Natural History Museum, ¸ondon, S=75BD, ;.K. MARK WILKINSON Department of Zoology, ¹ FIG. 1. Bootstrap consensus tree of early tetrapods with he Natural History Museum, clade bootstrap proportions and leaf stabilities. ¸ondon, S=75BD, ;.K. (Received on 12 May 1999, Accepted in revised is included were determined by pruning the leaf form on 13 July 1999) from the set of bootstrap trees and condensing identical trees from the same bootstrap replicate. The weight of each remaining tree was then set to REFERENCES be the inverse of the number of non-identical CLACK, J. A. (1998). A new Early Carboniferous tetrapod trees in the replicate. Statistical signi"cance was with a meH lange of crown-group characters. Nature 394, 66}69. tested using the Wilcoxon signed ranks tests FELSENSTEIN, J. (1985). Con"dence limits on phylogenies: an (two-tailed) of the di!erences in stability of the approach using the bootstrap. Evolution 39, 783}791. triplets when the leaf is included or not included. LOMBARD,R.E.&BOLT, J. R. (1995). A new primitive = Removing Eucritta or =hatcheeria increased tetrapod, hatcheeria deltae from the Lower Carbonifer- ous of Iowa. Palaeontology 38, 471}494. overall phylogenetic stability but the di!erences PANCHEN, A. L. (1985). On the amphibian Crassigyrinus were not statistically signi"cant (increase" scoticus Watson from the Carboniferous of Scotland. 0.20%, p"0.47 and 0.58%, p"0.77, respective- Philos. ¹rans. R. Soc. B 309, 505}568. SWOFFORD, D. L. (1993). PA;P: Phylogenetic Analysis ly). In contrast, removal of Crassigyrinus signi"- ;sing Parsimony, version 3.1.1. Illinois Natural History cantly increased stability (1.88%, p"0.003). Survey. Assessing the strengths and weaknesses of in- THORLEY,J.L.&PAGE, R. D. M. (1999). RadCon 0.7. http:// taxonomy.zoology.gla.ac.uk/&jthorley/. ferred relationships is an important element of WILKINSON, M. (1994). Common cladistic information and phylogenetics. Leaf and phylogenetic stability its consensus representation: reduced Adams and reduced measures address aspects of hypothesis quality cladistic consensus trees and pro"les. Syst. Biol. 43, (with respect to given data) that are not revealed 343}368. WILKINSON, M. (1996). Majority-rule reduced consensus by measures of clade support and, thus contrib- methods and their use in bootstrapping. Mol. Biol. Evol. ute to a more comprehensive understanding of 13, 437}444..
Recommended publications
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations.
    [Show full text]
  • Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods.
    [Show full text]
  • Annual Meeting 2002
    Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S.
    [Show full text]
  • I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
    Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2.
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • New Crassigyrinus-Like Fibula from the Tournaisian (Earliest Carboniferous) of Nova Scotia
    Canadian Journal of Earth Sciences New Crassigyrinus-like fibula from the Tournaisian (earliest Carboniferous) of Nova Scotia Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2019-0128.R3 Manuscript Type: Communication Date Submitted by the 27-Jan-2020 Author: Complete List of Authors: Lennie, Kendra; University of Calgary, Biological Sciences Mansky, Chris; Blue Beach Fossil Museum Anderson, Jason S.; University of Calgary, Comparative Biology and ExperimentalDraft Medicine Fin-to-Limb, Carboniferous, Vertebrate Evolution, Romer's Gap, Early Keyword: Tetrapod, Crassigyrinidae Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 16 Canadian Journal of Earth Sciences 1 New Crassigyrinus-like fibula from the Tournaisian (earliest 2 Carboniferous) of Nova Scotia 3 4 5 6 Kendra I. Lennie1,2 7 Chris F. Mansky3 8 Jason S. Anderson2,4 9 1. University of Calgary, Biological Sciences. 507 Campus Drive N.W. University of Calgary. Calgary, 10 Alberta. Canada, T2N 1N4. [email protected] 11 2. University of Calgary, McCaig Bone and Joint institute 12 3. Blue Beach Fossil Museum, 127 Blue Beach Road, Hantsport, Nova Scotia, B0P 1P0. 13 [email protected] 14 4. University of Calgary, Comparative Biology and Experimental Medicine. 3330 Hospital Dr. NW, 15 Calgary, Alberta. Canada, T2N 4N1. [email protected] 16 17 18 19 20 21 22 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 16 23 24 25 Abstract: 26 The transition between the Devonian and Carboniferous Periods is important for tetrapod vertebrates. 27 By the end of the Devonian the first limbs are present in aquatic animals, and by the mid Carboniferous 28 fully terrestrial tetrapods have diversified.
    [Show full text]
  • Early Vertebrate Evolution New Insights Into the Morphology of the Carboniferous Tetrapod Crassigyrinus Scoticus from Computed Tomography Eva C
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 157–175, 2019 (for 2018) Early Vertebrate Evolution New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography Eva C. HERBST* and John R. HUTCHINSON Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK. Email: [email protected] *Corresponding author ABSTRACT: The Carboniferous tetrapod Crassigyrinus scoticus is an enigmatic animal in terms of its morphology and its phylogenetic position. Crassigyrinus had extremely reduced forelimbs, and was aquatic, perhaps secondarily. Recent phylogenetic analyses tentatively place Crassigyrinus close to the whatcheeriids. Many Carboniferous tetrapods exhibit several characteristics associated with terrestrial locomotion, and much research has focused on how this novel locomotor mode evolved. However, to estimate the selective pressures and constraints during this important time in vertebrate evolution, it is also important to study early tetrapods like Crassigyrinus that either remained aquatic or secondarily became aquatic. We used computed tomographic scanning to search for more data about the skeletal morphology of Crassigyrinus and discovered several elements previously hidden by the matrix. These elements include more ribs, another neural arch, potential evidence of an ossified pubis and maybe of pleurocentra. We also discovered several additional metatarsals with interesting asymmetrical morphology that may have functional implications. Finally, we reclassify what was previously thought to be a left sacral rib as a left fibula and show previously unknown aspects of the morphology of the radius. These discoveries are examined in functional and phylogenetic contexts. KEY WORDS: evolution, palaeontology, phylogeny, water-to-land transition.
    [Show full text]
  • Early Vertebrate Evolution New Insights Into the Morphology of the Carboniferous Tetrapod Crassigyrinus Scoticus from Computed Tomography Eva C
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1–19, 2018 Early Vertebrate Evolution New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography Eva C. Herbst* and John R. Hutchinson Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK. Email: [email protected] *Corresponding author ABSTRACT: The Carboniferous tetrapod Crassigyrinus scoticus is an enigmatic animal in terms of its morphology and its phylogenetic position. Crassigyrinus had extremely reduced forelimbs, and was aquatic, perhaps secondarily. Recent phylogenetic analyses tentatively place Crassigyrinus close to the whatcheeriids. Many Carboniferous tetrapods exhibit several characteristics associated with terrestrial locomotion, and much research has focused on how this novel locomotor mode evolved. However, to estimate the selective pressures and constraints during this important time in vertebrate evolution, it is also important to study early tetrapods like Crassigyrinus that either remained aquatic or secondarily became aquatic. We used computed tomographic scanning to search for more data about the skeletal morphology of Crassigyrinus and discovered several elements previously hidden by the matrix. These elements include more ribs, another neural arch, potential evidence of an ossified pubis and maybe of pleurocentra. We also discovered several additional metatarsals with interesting asymmetrical morphology that may have functional implications. Finally, we reclassify what was previously thought to be a left sacral rib as a left fibula and show previously unknown aspects of the morphology of the radius. These discoveries are examined in functional and phylogenetic contexts. KEY WORDS: evolution, palaeontology, phylogeny, water-to-land transition.
    [Show full text]
  • Evolution, Homology, and Development of Tetrapod Limb Muscles
    diversity Review Evolution, Homology, and Development of Tetrapod Limb Muscles Julia L. Molnar 1,* and Rui Diogo 2 1 Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA 2 Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA; [email protected] * Correspondence: [email protected] Abstract: Since the early 1900s, researchers have attempted to unravel the origin and evolution of tetrapod limb muscles using a combination of comparative anatomy, phylogeny, and development. The methods for reconstructing soft tissues in extinct animals have been refined over time as our abil- ity to determine muscle homology and phylogenetic relationships between tetrapods has improved. Since many muscles do not leave osteological correlates, muscle reconstruction in extinct animals is largely based on anatomy and development in extant animals. While muscle anatomy in extant tetrapods is quite conservative, the homologies of certain muscles between taxonomic groups are still uncertain. Comparative developmental studies can help to resolve these controversies, as well as revealing general patterns of muscle morphogenesis across tetrapod groups. We review the methods, results, and controversies in the muscle reconstructions of early members of the amniote, mammalian, and lissamphibian lineages, including recent attempts to reconstruct limb muscles in members of the tetrapod stem group. We also review the contribution of recent comparative developmental studies toward understanding the evolution of tetrapod limb muscles, including morphogenic gradients, Citation: Molnar, J.L.; Diogo, R. the origin of paired fins, and the evolution of morphological complexity. Finally, we discuss the role Evolution, Homology, and of broad, comparative myological studies as part of an integrative research program on vertebrate Development of Tetrapod Limb evolutionary biology.
    [Show full text]
  • Earliest Carboniferous Tetrapod and Arthropod Faunas from Scotland Populate Romerts
    Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap Timothy R. Smithsona, Stanley P. Wood1, John E. A. Marshallb, and Jennifer A. Clacka,2 aUniversity Museum of Zoology Cambridge, Cambridge CB2 3EJ, United Kingdom; and bOcean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, United Kingdom Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved January 6, 2012 (received for review October 20, 2011) Devonian tetrapods (limbed vertebrates), known from an increas- later than the mid-Viséan (11, 12). Among recent discoveries ingly large number of localities, have been shown to be mainly from the mid-Viséan is the small amniote-like Casineria kiddi (3) aquatic with many primitive features. In contrast, the post- documenting the earliest known pentadactyl forelimb. Thus, al- Devonian record is marked by an Early Mississippian temporal though the “gap” is closing, we have lacked information about gap ranging from the earliest Carboniferous (Tournaisian and the crucial early part of the period during which terrestriality, early Viséan) to the mid-Viséan. By the mid-Viséan, tetrapods had defined simply as the ability to support the body and locomote become effectively terrestrial as attested by the presence of stem completely out of water, may have been achieved. amniotes, developed an essentially modern aspect, and given rise Among several explanations for the hiatus is one that took the to the crown group. Up to now, only two localities have yielded fossil record to reflect the actual pattern of evolution, marked by tetrapod specimens from the Tournaisian stage: one in Scotland the absence of animals from terrestrial ecosystems (13).
    [Show full text]
  • Newsletter Number 51
    The Palaeontology Newsletter Contents 51 Association Business 3 News 4 Meeting Reports 11 Association Meetings 16, 21, 33, 40 Sylvester-Bradley Award Report 18 Correspondence 22 Future meetings of other bodies 34 Book Reviews 41 Post-graduate opportunities 64 Palaeontology vol 45 parts 6 74 ANNUAL MEETING abstracts 75 Reminder: The deadline for copy for Issue no 52 is 12th February 2003 On the Web: http://www.palass.org/ Newsletter 51 3 Association Business Sylvester-Bradley Awards Awards are made to assist palaeontological research (travel, visits to museums, fi eldwork etc.), with each award having a maximum value of £1,000. Preference is given to applications for a single purpose (rather than top-ups of other grant applications) and no defi nite age limit is applied, although some preference may be given to younger applicants or those at the start of their careers. The award is open to both amateur and professional palaeontologists, but preference will be given to members of the Association. The deadline for applications is the 30th November 2002, with awards announced at the AGM. Applications consist of a CV, one A4 page account of research aims and objectives, and a breakdown of the proposed expenditure. Each application should be accompanied by the names of a personal and scientifi c referee. Successful candidates must produce a report for Palaeontology Newsletter and are asked to consider the Association’s meetings and publications as media for conveying the research results. 2002 Association Awards and Annual Address to be made at the Annual Meeting. 2002 Hodson Fund Award winner Dr Matthew A.
    [Show full text]