Platonic and Archimedean Solids

Total Page:16

File Type:pdf, Size:1020Kb

Platonic and Archimedean Solids PLATONIC AND ARCHIMEDEAN SOLIDS Author: Daud Sutton Number of Pages: 64 pages Published Date: 25 Oct 2005 Publisher: Wooden Books Publication Country: Powys, United Kingdom Language: English ISBN: 9781904263395 DOWNLOAD: PLATONIC AND ARCHIMEDEAN SOLIDS Streaming and Download help. Report this track or account. For example, a vertex configuration of 4,6,8 means that a square , hexagon , and octagon meet at a vertex with the order taken to be clockwise around the vertex. Some definitions of semiregular polyhedron include one more figure, the elongated square gyrobicupola or "pseudo-rhombicuboctahedron". The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular. The duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra , these are the face-uniform solids with regular vertices. The snub cube and snub dodecahedron are known as chiral , as they come in a left-handed form Latin: levomorph or laevomorph and right-handed form Latin: dextromorph. When something comes in multiple forms which are each other's three-dimensional mirror image , these forms may be called enantiomorphs. This nomenclature is also used for the forms of certain chemical compounds. The different Archimedean and Platonic solids can be related to each other using a handful of general constructions. Get All Access Pass. Ancient Fonts Collection. The usual way of enumerating the semiregular polyhedra is to eliminate solutions of conditions 1 and 2 using several classes of arguments and then prove that the solutions left are, in fact, semiregular Kepler , pp. The following table gives all possible regular and semiregular polyhedra and tessellations. In the table, 'P' denotes Platonic solid , 'M' denotes a prism or antiprism , 'A' denotes an Archimedean solid, and 'T' a plane tessellation. As shown in the above table, there are exactly 13 Archimedean solids Walsh , Ball and Coxeter They are called the cuboctahedron , great rhombicosidodecahedron , great rhombicuboctahedron , icosidodecahedron , small rhombicosidodecahedron , small rhombicuboctahedron , snub cube , snub dodecahedron , truncated cube , truncated dodecahedron , truncated icosahedron soccer ball , truncated octahedron , and truncated tetrahedron. Let be the inradius of the dual polyhedron corresponding to the insphere , which touches the faces of the dual solid , be the midradius of both the polyhedron and its dual corresponding to the midsphere , which touches the edges of both the polyhedron and its duals , the circumradius corresponding to the circumsphere of the solid which touches the vertices of the solid of the Archimedean solid, and the edge length of the solid Since the circumsphere and insphere are dual to each other, they obey the relationship. The following tables give the analytic and numerical values of , , and for the Archimedean solids with polyhedron edges of unit length Coxeter et al. Hume gives approximate expressions for the dihedral angles of the Archimedean solid and exact expressions for their duals. The Archimedean solids and their duals are all canonical polyhedra. Since the Archimedean solids are convex, the convex hull of each Archimedean solid is the solid itself. Ball, W. Geometry and the Imagination. Platonic and Archimedian Polyhedra. Return to Home Page. So it corresponds to the movable FIRE, or plasma. The Icosahedron has the largest volume for its surface area and is therefore the least movable. The Octahedron can rotate freely when held by its two opposite vertices. Its volume is between the Tetrahedron and the Icosahedron. So it corresponds to the movable AIR, or gas. Last but not least, the Dodecahedron. The dodecahedron corresponds to the UNIVERSE, or Aether, because the zodiac has 12 signs the constellations of stars , corresponding to the 12 faces of the dodecahedron. More coincidentally, researchers suggested in that the finite Universe has the shape of a Dodecahedron! These links that Plato made between the elements and the Platonic Solids has inspired many cultures and other mathematicians. Mainly Johannes Kepler — got inspired by the ideas of Plato. He used the Platonic Solids to describe the planetary movements, also known as the Mysterium Cosmographicum. He nested each Platonic Solid inside each other and also encased each of them inside a sphere. With the assumption that the planets circle the Sun. The Flower of Life is a complex shape with many lines in 2D. I write about philosophy, geometry, health, politics and other stuff that interests me. The Hippocritical Oath. What do you think? Cancel reply. Index of constructions by weight. Index of pictures by title. All the constructions. Platonic and Archimedean solids Models of every Platonic and Archimedean solid can be built with Geomag. One can tell polygons which are true faces of the bodies from auxiliary ones in this manner: Pentagons and squares: we use red panels for true faces, yellow panels for auxiliary ones. Triangles: we use green panels for true faces, no panels for auxiliary ones. Abstract Understanding the nature of dense particle packings is a subject of intense research in the physical, mathematical, and biological sciences..
Recommended publications
  • Snub Cell Tetricosa
    E COLE NORMALE SUPERIEURE ________________________ A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS ________________________ Département de Mathématiques et Informatique CNRS URA 1327 A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS January Lab oratoire dInformatique de lEcole Normale Superieure rue dUlm PARIS Cedex Tel Adresse electronique dmiensfr CEMI Russian Academy of Sciences Moscow A zo o of l embeddable p olytopal graphs MDeza CNRS Ecole Normale Superieure Paris VPGrishukhin CEMI Russian Academy of Sciences Moscow Abstract A simple graph G V E is called l graph if for some n 2 IN there 1 exists a vertexaddressing of each vertex v of G by a vertex av of the n cub e H preserving up to the scale the graph distance ie d v v n G d av av for all v 2 V We distinguish l graphs b etween skeletons H 1 n of a variety of well known classes of p olytop es semiregular regularfaced zonotop es Delaunay p olytop es of dimension and several generalizations of prisms and antiprisms Introduction Some notation and prop erties of p olytopal graphs and hypermetrics Vector representations of l metrics and hypermetrics 1 Regularfaced p olytop es Regular p olytop es Semiregular not regular p olytop es Regularfaced not semiregularp olytop es of dimension Prismatic graphs Moscow and Glob e graphs Stellated k gons Cup olas Antiwebs Capp ed antiprisms towers and fullerenes regularfaced not semiregular p olyhedra Zonotop es Delaunay p olytop es Small
    [Show full text]
  • Binary Icosahedral Group and 600-Cell
    Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons.
    [Show full text]
  • Steinitz's Theorem Project Report §1 Introduction §2 Basic Definitions
    Steinitz's Theorem Project Report Jon Hillery May 17, 2019 §1 Introduction Looking at the vertices and edges of polyhedra gives a family of graphs that we might expect has nice properties. It turns out that there is actually a very nice characterization of these graphs! We can use this characterization to find useful representations of certain graphs. §2 Basic Definitions We define a space to be convex if the line segment connecting any two points in the space remains entirely inside the space. This works for two-dimensional sets: and three-dimensional sets: Given a polyhedron, we define its 1-skeleton to be the graph formed from the vertices and edges of the polyhedron. For example, the 1-skeleton of a tetrahedron is K4: 1 Jon Hillery (May 17, 2019) Steinitz's Theorem Project Report Here are some further examples of the 1-skeleton of an icosahedron and a dodecahedron: §3 Properties of 1-Skeletons What properties do we know the 1-skeleton of a convex polyhedron must have? First, it must be planar. To see this, imagine moving your eye towards one of the faces until you are close enough that all of the other faces appear \inside" the face you are looking through, as shown here: This is always possible because the polyedron is convex, meaning intuitively it doesn't have any parts that \jut out". The graph formed from viewing in this way will have no intersections because the polyhedron is convex, so the straight-line rays our eyes see are not allowed to leave via an edge on the boundary of the polyhedron and then go back inside.
    [Show full text]
  • Hwsolns5scan.Pdf
    Math 462: Homework 5 Paul Hacking 3/27/10 (1) One way to describe a polyhedron is by cutting along some of the edges and folding it flat in the plane. The diagram obtained in this way is called a net. For example here is a net for the cube: Draw nets for the tetrahedron, octahedron, and dodecahedron. +~tfl\ h~~1l1/\ \(j [ NJte: T~ i) Mq~ u,,,,, cMi (O/r.(J 1 (2) Another way to describe a polyhedron is as follows: imagine that the faces of the polyhedron arc made of glass, look through one of the faces and draw the image you see of the remaining faces of the polyhedron. This image is called a Schlegel diagram. For example here is a Schlegel diagram for the octahedron. Note that the face you are looking through is not. drawn, hut the boundary of that face corresponds to the boundary of the diagram. Now draw a Schlegel diagram for the dodecahedron. (:~) (a) A pyramid is a polyhedron obtained from a. polygon with Rome number n of sides by joining every vertex of the polygon to a point lying above the plane of the polygon. The polygon is called the base of the pyramid and the additional vertex is called the apex, For example the Egyptian pyramids have base a square (so n = 4) and the tetrahedron is a pyramid with base an equilateral 2 I triangle (so n = 3). Compute the number of vertices, edges; and faces of a pyramid with base a polygon with n Rides. (b) A prism is a polyhedron obtained from a polygon (called the base of the prism) as follows: translate the polygon some distance in the direction normal to the plane of the polygon, and join the vertices of the original polygon to the corresponding vertices of the translated polygon.
    [Show full text]
  • Geometry and Arithmetic of Crystallographic Sphere Packings
    Geometry and arithmetic of crystallographic sphere packings Alex Kontorovicha,b,1 and Kei Nakamuraa aDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08854; and bSchool of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 Edited by Kenneth A. Ribet, University of California, Berkeley, CA, and approved November 21, 2018 (received for review December 12, 2017) We introduce the notion of a “crystallographic sphere packing,” argument leading to Theorem 3 comes from constructing circle defined to be one whose limit set is that of a geometrically packings “modeled on” combinatorial types of convex polyhedra, finite hyperbolic reflection group in one higher dimension. We as follows. exhibit an infinite family of conformally inequivalent crystallo- graphic packings with all radii being reciprocals of integers. We (~): Polyhedral Packings then prove a result in the opposite direction: the “superintegral” Let Π be the combinatorial type of a convex polyhedron. Equiv- ones exist only in finitely many “commensurability classes,” all in, alently, Π is a 3-connectedz planar graph. A version of the at most, 20 dimensions. Koebe–Andreev–Thurston Theorem§ says that there exists a 3 geometrization of Π (that is, a realization of its vertices in R with sphere packings j crystallographic j arithmetic j polyhedra j straight lines as edges and faces contained in Euclidean planes) Coxeter diagrams having a midsphere (meaning, a sphere tangent to all edges). This midsphere is then also simultaneously a midsphere for the he goal of this program is to understand the basic “nature” of dual polyhedron Πb. Fig. 2A shows the case of a cuboctahedron Tthe classical Apollonian gasket.
    [Show full text]
  • Are Your Polyhedra the Same As My Polyhedra?
    Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach.
    [Show full text]
  • DIMACS REU 2018 Project: Sphere Packings and Number Theory
    DIMACS REU 2018 Project: Sphere Packings and Number Theory Alisa Cui, Devora Chait, Zachary Stier Mentor: Prof. Alex Kontorovich July 13, 2018 Apollonian Circle Packing This is an Apollonian circle packing: I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three I Continue drawing tangent circles, densely filling space These two images actually represent the same circle packing! We can go from one realization to the other using circle inversions. Apollonian Circle Packing Apollonian Circle Packing These two images actually represent the same circle packing! We can go from one realization to the other using circle inversions. Circle Inversions Circle inversion sends points at a distance of rd from the center of the mirror circle to a distance of r=d from the center of the mirror circle. Circle Inversions Circle inversion sends points at a distance of rd from the center of the mirror circle to a distance of r=d from the center of the mirror circle.
    [Show full text]
  • [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated Into This Format from Data Given In
    ENTRY POLYHEDRA [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated into this format from data given in http://netlib.bell-labs.com/netlib tetrahedron The [tetrahedron] is a polyhedron with 4 vertices and 4 faces. The dual polyhedron is called tetrahedron. cube The [cube] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. hexahedron The [hexahedron] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. octahedron The [octahedron] is a polyhedron with 6 vertices and 8 faces. The dual polyhedron is called cube. dodecahedron The [dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called icosahedron. icosahedron The [icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called dodecahedron. small stellated dodecahedron The [small stellated dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called great dodecahedron. great dodecahedron The [great dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called small stellated dodecahedron. great stellated dodecahedron The [great stellated dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called great icosahedron. great icosahedron The [great icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called great stellated dodecahedron. truncated tetrahedron The [truncated tetrahedron] is a polyhedron with 12 vertices and 8 faces. The dual polyhedron is called triakis tetrahedron. cuboctahedron The [cuboctahedron] is a polyhedron with 12 vertices and 14 faces. The dual polyhedron is called rhombic dodecahedron.
    [Show full text]
  • Mathematical Constants and Sequences
    Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) ..
    [Show full text]
  • Stacked 4-Polytopes with Ball Packable Graphs
    STACKED 4-POLYTOPES WITH BALL PACKABLE GRAPHS HAO CHEN Abstract. After investigating the ball-packability of some small graphs, we give a full characterisation, in terms of forbidden induced subgraphs, for the stacked 4-polytopes whose 1-skeletons can be realised by the tangency relations of a ball packing. 1. Introduction A ball packing is a collection of balls with disjoint interiors. A graph is said to be ball packable if it can be realized by the tangency relations of a ball packing. Formal definitions will be given later. The combinatorics of disk packings (2-dimensional ball packings) is well un- derstood thanks to the Koebe{Andreev{Thurston's disk packing theorem, which says that every planar graph is disk packable. However, we know little about the combinatorics of ball packings in higher dimensions. In this paper we study the relation between Apollonian ball packings and stacked polytopes: An Apollonian ball packing is formed by repeatedly filling new balls into holes in a ball packing. A stacked polytope is formed, starting from a simplex, by repeatedly gluing new simplices onto facets. Detailed and formal introductions can be found respectively in Section 2.3 and in Section 2.4. There is a 1-to-1 correspondence between 2-dimensional Apollonian ball packings and 3-dimensional stacked polytopes: a graph can be realised by the tangency relations of an Apollonian disk packing if and only if it is the 1-skeleton of a stacked 3-polytope. As we will see, this relation does not hold in higher dimensions: On one hand, the 1-skeleton of a stacked polytope may not be realizable by the tangency relations of any Apollonian ball packing.
    [Show full text]
  • How to Stay Away from Each Other in a Spherical Universe 1
    GENERAL I ARTICLE How to Stay Away from Each Other in a Spherical Universe 1. Tammes' Problem Bhaskar Bagchi Mathematics is full of innocent looking problems which, when pursued, soon grow to majestic pro­ portions and begin to impinge upon the frontiers of research. One such problem is the subject of this two-part article - the problem of packing spherical caps on the surface of a sphere. Bhaskar Bagchi is with Twelve Men on a Sphere the Indian Statistical Institute since 1971, first For most practical purposes, we humans are inhabitants of as a student and then as a member of the faculty. a (two dimensional) spherical universe: we are constrained He is interested in to eke out our lives on the surface of the earth. Suppose diverse areas of twelve denizens of this spherical universe hate each other mathematics like so much that they decide to build their houses as far away combinatorics, from each other 88 possible. We assume that, except for elementary and analytic this morbid hatred, these guys have no other constraints: number theory, they may build their houses anywhere on the earth's surface functional analysis, (must be stinkingly rich to have such freedom!). The ques­ combinatorial topology tion is: how should these twelve houses be positioned ? The and statistics. answer depends, of course, on what we mean by the phrase 'as far away from each other as possible'. Let us take it to mean that the minimum of the pair-wise distances between the twelve houses is to be maximised subjected to the only Figure 1 Icosahedron.
    [Show full text]
  • Mathematical Origami: Phizz Dodecahedron
    Mathematical Origami: • It follows that each interior angle of a polygon face must measure less PHiZZ Dodecahedron than 120 degrees. • The only regular polygons with interior angles measuring less than 120 degrees are the equilateral triangle, square and regular pentagon. Therefore each vertex of a Platonic solid may be composed of • 3 equilateral triangles (angle sum: 3 60 = 180 ) × ◦ ◦ • 4 equilateral triangles (angle sum: 4 60 = 240 ) × ◦ ◦ • 5 equilateral triangles (angle sum: 5 60 = 300 ) × ◦ ◦ We will describe how to make a regular dodecahedron using Tom Hull’s PHiZZ • 3 squares (angle sum: 3 90 = 270 ) modular origami units. First we need to know how many faces, edges and × ◦ ◦ vertices a dodecahedron has. Let’s begin by discussing the Platonic solids. • 3 regular pentagons (angle sum: 3 108 = 324 ) × ◦ ◦ The Platonic Solids These are the five Platonic solids. A Platonic solid is a convex polyhedron with congruent regular polygon faces and the same number of faces meeting at each vertex. There are five Platonic solids: tetrahedron, cube, octahedron, dodecahedron, and icosahedron. #Faces/ The solids are named after the ancient Greek philosopher Plato who equated Solid Face Vertex #Faces them with the four classical elements: earth with the cube, air with the octa- hedron, water with the icosahedron, and fire with the tetrahedron). The fifth tetrahedron 3 4 solid, the dodecahedron, was believed to be used to make the heavens. octahedron 4 8 Why Are There Exactly Five Platonic Solids? Let’s consider the vertex of a Platonic solid. Recall that the same number of faces meet at each vertex. icosahedron 5 20 Then the following must be true.
    [Show full text]