Top Curr Chem (2012) DOI: 10.1007/128_2012_355 # Springer-Verlag Berlin Heidelberg 2012 Volatility and Aging of Atmospheric Organic Aerosol Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, and Jesse H. Kroll Abstract Organic-aerosol phase partitioning (volatility) and oxidative aging are inextricably linked in the atmosphere because partitioning largely controls the rates and mechanisms of aging reactions as well as the actual amount of organic aerosol. Here we discuss those linkages, describing the basic theory of partitioning thermo- dynamics as well as the dynamics that may limit the approach to equilibrium under some conditions. We then discuss oxidative aging in three forms: homogeneous gas-phase oxidation, heterogeneous oxidation via uptake of gas-phase oxidants, and aqueous-phase oxidation. We present general scaling arguments to constrain the relative importance of these processes in the atmosphere, compared to each other and compared to the characteristic residence time of particles in the atmosphere. Keywords Aerosols Á Atmospheric Chemistry Á Multiphase Chemistry N.M. Donahue (*), A.L. Robinson and E.R. Trump Carnegie Mellon University Center for Atmospheric Particle Studies, Pittsburgh, PA, USA e-mail:
[email protected] I. Riipinen Department of Applied Environmental Science and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden Carnegie Mellon University Center for Atmospheric Particle Studies, Pittsburgh, PA, USA J.H. Kroll Department of Civil and Environmental Engineering,