Curriculum Vita

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vita Curriculum vita Baolin Wu June 2014 Contact Information Address Division of Biostatistics School of Public Health, University of Minnesota A460 Mayo Building, MMC 303 420 Delaware St SE Minneapolis, MN 55455 Phone (612) 624-0647 Fax (612) 626-0660 Email [email protected] Education 1999-2004 Ph.D. in Biostatistics, Yale University, New Haven, CT. 1995-1999 B.S. in Probability and Statistics, Peking University, Beijing, P.R.China. Positions 2010-Present Tenured Associate Professor, Division of Biostatistics, School of Public Health, University of Minnesota 2004-2010 Tenure-track Assistant Professor, Division of Biostatistics, School of Public Health, University of Minnesota Student Advising • Wei Zhang (ongoing CS PhD): co-advisor. • Xiting Cao (PhD): graduated November 2011 and now worked for Merck. • Ran Li (PhD): graduated December 2011 and now worked for Abbott. • Sang Mee Lee (PhD): graduated July 2011 and now a Research Assistant Professor of Biostatistics at Department of Health Studies, University of Chicago. Won the student paper award at the 2010 ENAR meeting. • Fang Liu (MS): graduated May 2007 and now worked for UnitedHealth. • Jiaqi Yang (MS): graduated May 2008 and now worked for Schlumberger-Doll Research. 1 Professional Service Referee for journals Annals of Applied Statistics; Applied Statistics; Behavior Genetics; Bioinformatics; Biomet- rical Journal; Biometrics; Biometrika; Biostatistics; BMC Bioinformatics; Communications in Statistics - Simulation and Computation; Computational Statistics and Data Analysis; Genome Biology; IEEE/ACM Transactions on Computational Biology and Bioinformatics; Journal of Agricultural, Biological, and Environmental Statistics; Journal of Applied Statis- tics; Journal of Biological Systems; Journal of Biomedicine and Biotechnology; Journal of the American Statistical Association; Nucleic Acids Research; Physiological Genomics; Sta- tistical Applications in Genetics and Molecular Biology; Statistics in Biopharmaceutical Research; Statistics in Medicine; Statistica Sinica; Technometrics; Test. Grant review 1. NCI study section for RFA CA 07-005 \Advanced Proteomic Platforms and Compu- tational Sciences for the NCI Clinical Proteomic Technologies Initiative". 2006. 2. Review grant applications for Italian Ministry of Health in association with NIH. 2009. 3. Review grant applications for NIH. 2009-2010. UofM Services and Committees 1. Exam Committee, 2009- (PhD exam chair for 2012-). 2. Admission Committee, 2004-2005. 3. Seminar Committee, 2004 - 2010. 4. Faculty Search Committee, 2005 - 2006. 2007 - 2010. 5. School of Public Health APT Ad Hoc Committee, 2009. 6. School of Public Health Research Committee, 2008 - 2010. 2 Research Articles 1. Zhao H, Wu B, Sun N (2003). DNA-protein binding and gene expression patterns. In Goldstein DR(ed). Science and Statistics: A Festschrift for Terry Speed. IMS Lecture Notes-Monograph Series, 40: 259-274. 2. Wu B, Abbott T, Fishman D, Mcmurrary W, Mor G, Stone K, Ward D, Williams K, Zhao H (2003). Comparison of statistical methods for classification of ovarian cancer using a proteomics dataset. Bioinformatics, 19: 1636-1643. 3. Goh C, Lan N, Douglas S, Wu B, Bertone P, Echols N, Milburn D, Montelione G, Zhao H, Gerstein M (2003). Mining the structural genomics pipeline: Identification and analysis of protein properties that affect high-throughput experimental analysis. Journal of Molecular Biology, 336: 115-30. 4. Lai Y, Wu B, Chen L, and Zhao H (2004). Statistical method for identifying differ- ential gene-gene coexpression patterns. Bioinformatics, 20: 3146-3155. 5. Lin N, Wu B, Jansen R, Gerstein M, Zhao H (2004). Information assessment on predicting protein-protein interactions. BMC Bioinformatics, 5:154. 6. Carriero N, Osier M, Cheung K, Miller P, Gerstein M, Zhao H, Wu B, Rifkin S, Chang J, Zhang H, White K, Williams K, Schultz M (2005). A \high productivity/low maintenance" approach to high performance computation for biomedicine: Four case studies. Journal of American Medical Informatics Association, 12: 90-98. 7. Gulcicek E, Colangelo C, McMurray W, Stone K, Wu B, Wu T, Spratt H, Kurosky A, Zhao H, Williams K (2005). Proteomics and the analysis of proteomic data. In Davison D, Page R, Petsko G, Stormo G, and Stein L(ed). Current Protocols in Bioinformatics, John Wiley and Sons, Indianapolis, IN. 8. Huang T, Wu B, Lizardi P, Zhao H (2005). Detection of DNA copy number alterations using penalized least squares regression. Bioinformatics, 21: 3811-3817. 9. Wu B (2005). Differential gene expression detection using penalized linear regression model: the improved SAM statistics. Bioinformatics, 21: 1565-1571. 10. Yu W, Wu B, Huang T, Li X, Williams K, Zhao H (2006). Statistical methods in proteomics. In Pham H(ed). Springer Handbook of Engineering Statistics, Springer- Verlag, London, UK. 11. Yu W, Wu B, Liu J, Li X, Williams K, Zhao H (2006). MALDI-MS data analysis for disease biomarker discovery. Methods in Molecular Biology, 328: 199-216. 12. Yu W, Wu B, Lin N, Stone K, Williams K, Zhao H (2006). Detecting and aligning peaks in mass spectrometry data with applications to MALDI. Computational Biology and Chemistry, 30: 27-38. 3 13. Yu W, Li X, Liu J, Wu B, Williams K and Zhao H (2006). Multiple peak alignment in sequential data analysis: A scale-space based approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3: 208-219. 14. Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H (2006). Ovarian cancer classification based on mass spectrometry analysis of sera. Cancer Informatics, 2: 123-132. 15. Wu B, Guan Z, and Zhao H (2006). Parametric and nonparametric FDR estimation revisited. Biometrics, 62: 735-744. 16. Wu B (2006). Differential gene expression detection and sample classification using penalized linear regression models. Bioinformatics, 22: 472-476. 17. Wu B, Liu N, Zhao H (2006). PSMIX: an R package for population structure inference via maximum likelihood method. BMC Bioinformatics, 7:317. 18. Oetting W, Wu B, Lande J, Brott M and Matas A (2006). Identification of DNA variants and genetic profiling of kidney allograft recipients using a custom SNP chip. Transplantation, 82(1 Suppl 2):911. 19. Whitson B, D'Cunha J, Hoang C, Wu B, Ikramuddin S, Buchwald H, Panoskaltsis- Mortari A, Kratzke R, Miller J and Maddaus M (2007). Comparison of minimally invasive vs open roux-en-y gastric bypass on immune effector cell function. Journal of the American College of Surgeons, 205(3 Suppl 1):S13. 20. Li N, Wu B, Wei P, Xie B, Xie Y, Xiao G and Pan W (2007). Functional group based linkage analysis of gene expression trait loci. BMC Proceedings 2007, 1(Suppl 1):S117. 21. Wu B (2007). Cancer outlier differential gene expression detection. Biostatistics, 8: 566-575. (To 50 most cited papers in Biostatistics up to April, 2012) 22. Liu F and Wu B (2007). Multi-group cancer outlier differential gene expression de- tection. Computational Biology and Chemistry, 31: 65-71. 23. Liu J, Yu W, Wu B and Zhao H (2008). Bayesian mass spectra peak alignment from mass charge ratios. Cancer Informatics, 4, 217-241. 24. Chen W, Kumar A, Hudson W, Li Q, Wu B, Staggs R, Lund E, Sam T and Kersey J (2008). Malignant transformation initiated by Mll-AF9: Gene dosage and critical target cells. Cancer Cell, 13, 432-440. 25. Guan Z, Wu B, and Zhao H (2008). Application of Bernstein polynomial in the estimation of false-discovery-rate. Statistica Sinica, 18: 905-923. 26. Fu S, Kodl M, Joseph A, Hatsukami D, Johnson E, Breslau N, Wu B, Bierut L (2008). Racial/Ethnic Disparities in the Use of Nicotine Replacement Therapy and Quit Ratios in Lifetime Smokers Aged 25-44. Cancer Epidemiology, Biomarkers & Prevention, 17: 1640-1647. 4 27. John C, Bangirana P, Byarugaba J, Opika-Opoka R, Idro R, Jurek A, Wu B, Boivin M (2008). Long-term cognitive impairment in children with cerebral malaria. Pediatrics, 122: e92-e99. 28. Whitson B, D'Cunha J, Andrade R, Kelly R, Groth S, Wu B, Miller J, Kratzke R and Maddaus M (2008). Thoracoscopic vs. thoracotomy approaches to lobectomy: differential impairment of cellular immunity. Annals of Thoracic Surgery, 86: 1735- 1744. 29. Hwang T, Sicotte H, Tian Z, Wu B, Kocher J, Wigle D, Kumar V and Kuang R (2008). Robust and efficient identification of biomarkers by classifying features on graphs. Bioinformatics, 24: 2023-2029. 30. Whitson B, DCunha J, Hoang C, Wu B, Ikramuddin S, Buchwald H, Panoskaltsis- Mortari A, Kratzke R, Miller J and Maddaus M (2009). Minimally invasive versus open roux-en-y gastric bypass: impact on immune effector cells. Surgery for Obesity and Related Diseases, 5: 181-193. 31. Kumar A, Li Q, Hudson W, Chen W, Sam T, Yao Q, Lund E, Wu B, Kowal B and Kersey J (2009). A role for MEIS1 in MLL-fusion gene leukemia. Blood, 113: 1756- 1758. 32. de Jong E, Xie H, Onsongo G, Stone M, Chen X, Kooren J, Refsland W, Griffin R, Ondrey F, Wu B, Le C, Rhodus N, Carlis J and Griffin T (2010). Quantitative Pro- teomics Reveals Myosin and Actin as Promising Saliva Biomarkers for Distinguishing Pre-Malignant and Malignant Oral Lesions. PLoS ONE, 5(6): e1114. 33. Kumar A, Sarver A, Wu B and Kersey J (2010). Meis1 maintains stemness signature in MLL-AF9 leukemia. Blood, 115: 3642-3643. 34. Canales, B.K., L. Anderson, L. Higgins, K. Ensrud-Bowlin, K.P. Roberts, Wu B, I.W. Kim, and M. Monga (2010). Proteome of Human Calcium Kidney Stones. Urology, 76(4): 1017.e13{1017.e20. 35. Onsongo, G., M.D. Stone, S.K. Van Riper, J. Chilton, Wu B, L. Higgins, T.C. Lund, J.V. Carlis, and T.J. Griffin (2010). LTQ-iQuant: A Freely Available Software Pipeline for Automated and Accurate Protein Quantification of Isobaric Tagged Peptide Data from LTQ Instruments. Proteomics, 10(19): 3533{3538. 36. Zhang W, Hwang B, Wu B, and Kuang R (2010).
Recommended publications
  • BIOGRAPHICAL SKETCH Garrett M. Fitzmaurice Associate Professor Of
    Principal Investigator/Program Director (Last, First, Middle): BIOGRAPHICAL SKETCH Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES. NAME POSITION TITLE Garrett M. Fitzmaurice Associate Professor of Biostatistics eRA COMMONS USER NAME EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) DEGREE INSTITUTION AND LOCATION YEAR(s) FIELD OF STUDY (if applicable) National University of Ireland BA, MA 1983, 1987 Psychology University of London MSc 1986 Quantitative Methods Harvard University ScD 1993 Biostatistics Professional Experience: 1986-1989 Statistician, Department of Psychology, New York University 1989-1990 Teaching Assistant, Department of Biostatistics, Harvard School of Public Health 1990-1993 Teaching Fellow in Biostatistics, Department of Biostatistics, Harvard SPH 1993-1994 Post-doctoral Research Fellow, Department of Biostatistics, Harvard SPH 1994-1997 Research Fellow, Nuffield College, Oxford University, United Kingdom 1997-1999 Assistant Professor of Biostatistics, Harvard School of Public Health 1999-present Associate Professor of Biostatistics, Harvard School of Public Health 2004-present Associate Professor of Medicine (Biostatistics), Harvard Medical School 2004-present Biostatistician, Division of General Medicine, Brigham and Women’s Hospital, Boston 2006-present Foreign Adjunct Professor of Biostatistics,
    [Show full text]
  • TUTORIAL in BIOSTATISTICS: the Self-Controlled Case Series Method
    STATISTICS IN MEDICINE Statist. Med. 2005; 0:1–31 Prepared using simauth.cls [Version: 2002/09/18 v1.11] TUTORIAL IN BIOSTATISTICS: The self-controlled case series method Heather J. Whitaker1, C. Paddy Farrington1, Bart Spiessens2 and Patrick Musonda1 1 Department of Statistics, The Open University, Milton Keynes, MK7 6AA, UK. 2 GlaxoSmithKline Biologicals, Rue de l’Institut 89, B-1330 Rixensart, Belgium. SUMMARY The self-controlled case series method was developed to investigate associations between acute outcomes and transient exposures, using only data on cases, that is, on individuals who have experienced the outcome of interest. Inference is within individuals, and hence fixed covariates effects are implicitly controlled for within a proportional incidence framework. We describe the origins, assumptions, limitations, and uses of the method. The rationale for the model and the derivation of the likelihood are explained in detail using a worked example on vaccine safety. Code for fitting the model in the statistical package STATA is described. Two further vaccine safety data sets are used to illustrate a range of modelling issues and extensions of the basic model. Some brief pointers on the design of case series studies are provided. The data sets, STATA code, and further implementation details in SAS, GENSTAT and GLIM are available from an associated website. key words: case series; conditional likelihood; control; epidemiology; modelling; proportional incidence Copyright c 2005 John Wiley & Sons, Ltd. 1. Introduction The self-controlled case series method, or case series method for short, provides an alternative to more established cohort or case-control methods for investigating the association between a time-varying exposure and an outcome event.
    [Show full text]
  • Alberto Abadie
    ALBERTO ABADIE Office Address Massachusetts Institute of Technology Department of Economics 50 Memorial Drive Building E52, Room 546 Cambridge, MA 02142 E-mail: [email protected] Academic Positions Massachusetts Institute of Technology Cambridge, MA Professor of Economics, 2016-present IDSS Associate Director, 2016-present Harvard University Cambridge, MA Professor of Public Policy, 2005-2016 Visiting Professor of Economics, 2013-2014 Associate Professor of Public Policy, 2004-2005 Assistant Professor of Public Policy, 1999-2004 University of Chicago Chicago, IL Visiting Assistant Professor of Economics, 2002-2003 National Bureau of Economic Research (NBER) Cambridge, MA Research Associate (Labor Studies), 2009-present Faculty Research Fellow (Labor Studies), 2002-2009 Non-Academic Positions Amazon.com, Inc. Seattle, WA Academic Research Consultant, 2020-present Education Massachusetts Institute of Technology Cambridge, MA Ph.D. in Economics, 1995-1999 Thesis title: \Semiparametric Instrumental Variable Methods for Causal Response Mod- els." Centro de Estudios Monetarios y Financieros (CEMFI) Madrid, Spain M.A. in Economics, 1993-1995 Masters Thesis title: \Changes in Spanish Labor Income Structure during the 1980's: A Quantile Regression Approach." 1 Universidad del Pa´ıs Vasco Bilbao, Spain B.A. in Economics, 1987-1992 Specialization Areas: Mathematical Economics and Econometrics. Honors and Awards Elected Fellow of the Econometric Society, 2016. NSF grant SES-1756692, \A General Synthetic Control Framework of Estimation and Inference," 2018-2021. NSF grant SES-0961707, \A General Theory of Matching Estimation," with G. Imbens, 2010-2012. NSF grant SES-0617810, \The Economic Impact of Terrorism: Lessons from the Real Estate Office Markets of New York and Chicago," with S. Dermisi, 2006-2008.
    [Show full text]
  • Miguel De Carvalho
    School of Mathematics Miguel de Carvalho Contact M. de Carvalho T: +44 (0) 0131 650 5054 Information The University of Edinburgh B: [email protected] School of Mathematics : mb.carvalho Edinburgh EH9 3FD, UK +: www.maths.ed.ac.uk/ mdecarv Personal Born September 20, 1980 in Montijo, Lisbon. Details Portuguese and EU citizenship. Interests Applied Statistics, Biostatistics, Econometrics, Risk Analysis, Statistics of Extremes. Education Universidade de Lisboa, Portugal Habilitation in Probability and Statistics, 2019 Thesis: Statistical Modeling of Extremes Universidade Nova de Lisboa, Portugal PhD in Mathematics with emphasis on Statistics, 2009 Thesis: Extremum Estimators and Stochastic Optimization Advisors: Manuel Esqu´ıvel and Tiago Mexia Advisors of Advisors: Jean-Pierre Kahane and Tiago de Oliveira. Nova School of Business and Economics (Triple Accreditation), Portugal MSc in Economics, 2009 Thesis: Mean Regression for Censored Length-Biased Data Advisors: Jos´eA. F. Machado and Pedro Portugal Advisors of Advisors: Roger Koenker and John Addison. Universidade Nova de Lisboa, Portugal `Licenciatura'y in Mathematics, 2004 Professional Probation Period: Statistics Portugal (Instituto Nacional de Estat´ıstica). Awards & ISBA (International Society for Bayesian Analysis) Honours Lindley Award, 2019. TWAS (Academy of Sciences for the Developing World) Young Scientist Prize, 2015. International Statistical Institute Elected Member, 2014. American Statistical Association Young Researcher Award, Section on Risk Analysis, 2011. National Institute of Statistical Sciences j American Statistical Association Honorary Mention as a Finalist NISS/ASA Best y-BIS Paper Award, 2010. Portuguese Statistical Society (Sociedade Portuguesa de Estat´ıstica) Young Researcher Award, 2009. International Association for Statistical Computing ERS IASC Young Researcher Award, 2008. 1 of 13 p l e t t si a o e igulctoson Applied Statistical ModelingPublications 1.
    [Show full text]
  • Biometrics & Biostatistics
    Hanley and Moodie, J Biomet Biostat 2011, 2:5 Biometrics & Biostatistics http://dx.doi.org/10.4172/2155-6180.1000124 Research Article Article OpenOpen Access Access Sample Size, Precision and Power Calculations: A Unified Approach James A Hanley* and Erica EM Moodie Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Canada Abstract The sample size formulae given in elementary biostatistics textbooks deal only with simple situations: estimation of one, or a comparison of at most two, mean(s) or proportion(s). While many specialized textbooks give sample formulae/tables for analyses involving odds and rate ratios, few deal explicitly with statistical considera tions for slopes (regression coefficients), for analyses involving confounding variables or with the fact that most analyses rely on some type of generalized linear model. Thus, the investigator is typically forced to use “black-box” computer programs or tables, or to borrow from tables in the social sciences, where the emphasis is on cor- relation coefficients. The concern in the – usually very separate – modules or stand alone software programs is more with user friendly input and output. The emphasis on numerical exactness is particularly unfortunate, given the rough, prospective, and thus uncertain, nature of the exercise, and that different textbooks and software may give different sample sizes for the same design. In addition, some programs focus on required numbers per group, others on an overall number. We present users with a single universal (though sometimes approximate) formula that explicitly isolates the impacts of the various factors one from another, and gives some insight into the determinants for each factor.
    [Show full text]
  • The American Statistician
    This article was downloaded by: [T&F Internal Users], [Rob Calver] On: 01 September 2015, At: 02:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG The American Statistician Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utas20 Reviews of Books and Teaching Materials Published online: 27 Aug 2015. Click for updates To cite this article: (2015) Reviews of Books and Teaching Materials, The American Statistician, 69:3, 244-252, DOI: 10.1080/00031305.2015.1068616 To link to this article: http://dx.doi.org/10.1080/00031305.2015.1068616 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes.
    [Show full text]
  • Econometrica 0012-9682 Biostatistics 1465-4644 J R
    ECONOMETRICA 0012-9682 BIOSTATISTICS 1465-4644 J R STAT SOC B 1369-7412 ANN APPL STAT 1932-6157 J AM STAT ASSOC 0162-1459 ANN STAT 0090-5364 STAT METHODS MED RES 0962-2802 STAT SCI 0883-4237 STAT MED 0277-6715 BIOMETRICS 0006-341X CHEMOMETR INTELL LAB 0169-7439 IEEE ACM T COMPUT BI 1545-5963 J BUS ECON STAT 0735-0015 J QUAL TECHNOL 0022-4065 FUZZY SET SYST 0165-0114 STAT APPL GENET MOL 1544-6115 PHARM STAT 1539-1604 MULTIVAR BEHAV RES 0027-3171 PROBAB THEORY REL 0178-8051 J COMPUT BIOL 1066-5277 STATA J 1536-867X J COMPUT GRAPH STAT 1061-8600 J R STAT SOC A STAT 0964-1998 INSUR MATH ECON 0167-6687 J CHEMOMETR 0886-9383 BIOMETRIKA 0006-3444 BRIT J MATH STAT PSY 0007-1102 STAT COMPUT 0960-3174 J AGR BIOL ENVIR ST 1085-7117 ANN APPL PROBAB 1050-5164 ANN PROBAB 0091-1798 SCAND J STAT 0303-6898 AM STAT 0003-1305 ECONOMET REV 0747-4938 FINANC STOCH 0949-2984 ELECTRON J PROBAB 1083-6489 OPEN SYST INF DYN 1230-1612 COMPUT STAT DATA AN 0167-9473 BIOMETRICAL J 0323-3847 PROBABILIST ENG MECH 0266-8920 TECHNOMETRICS 0040-1706 STOCH PROC APPL 0304-4149 J R STAT SOC C-APPL 0035-9254 ENVIRON ECOL STAT 1352-8505 J STAT SOFTW 1548-7660 BERNOULLI 1350-7265 INFIN DIMENS ANAL QU 0219-0257 J BIOPHARM STAT 1054-3406 STOCH ENV RES RISK A 1436-3240 TEST 1133-0686 ASTIN BULL 0515-0361 ADV APPL PROBAB 0001-8678 J TIME SER ANAL 0143-9782 MATH POPUL STUD 0889-8480 COMB PROBAB COMPUT 0963-5483 LIFETIME DATA ANAL 1380-7870 METHODOL COMPUT APPL 1387-5841 ECONOMET J 1368-4221 STATISTICS 0233-1888 J APPL PROBAB 0021-9002 J MULTIVARIATE ANAL 0047-259X ENVIRONMETRICS 1180-4009
    [Show full text]
  • Curriculum Vitae Jianwen Cai
    CURRICULUM VITAE JIANWEN CAI Business Address: Department of Biostatistics, CB # 7420 The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7420 TEL: (919) 966-7788 FAX: (919) 966-3804 Email: [email protected] Education: 1992 - Ph.D. (Biostatistics), University of Washington, Seattle, Washington. 1989 - M.S. (Biostatistics), University of Washington, Seattle, Washington. 1985 - B.S. (Mathematics), Shandong University, Jinan, P. R. China. Positions: Teaching Assistant: Department of Biostatistics, University of Washington, 1988 - 1990. Research Assistant: Cardiovascular Health Study, University of Washington, 1988 - 1990. Fred Hutchinson Cancer Research Center, 1990 - 1992. Research Associate: Fred Hutchinson Cancer Research Center, 1992 - 1992. Assistant Professor: Department of Biostatistics, University of North Carolina at Chapel Hill, 1992 - 1999. Associate Professor: Department of Biostatistics, University of North Carolina at Chapel Hill, 1999 - 2004. Professor: Department of Biostatistics, University of North Carolina at Chapel Hill, 2004 - present. Interim Chair: Department of Biostatistics, University of North Carolina at Chapel Hill, 2006. Associate Chair: Department of Biostatistics, University of North Carolina at Chapel Hill, 2006-present. Professional Societies: American Statistical Association (ASA) International Biometric Society (ENAR) Institute of Mathematical Statistics (IMS) International Chinese Statistical Association (ICSA) 1 Research Interests: Survival Analysis and Regression Models, Design and Analysis of Clinical Trials, Analysis of Correlated Responses, Cancer Biology, Cardiovascular Disease Research, Obesity Research, Epidemiological Models. Awards/Honors: UNC School of Public Health McGavran Award for Excellence in Teaching, 2004. American Statistical Association Fellow, 2005 Institute of Mathematical Statistics Fellow, 2009 Professional Service: Associate Editor: Biometrics: 2000-2010. Lifetime Data Analysis: 2002-. Statistics in Biosciences: 2009-. Board Member: ENAR Regional Advisory Board, 1996-1998.
    [Show full text]
  • Ying Zhang, Phd ______
    Ying Zhang, PhD ________________________________________________________________ Home and Campus Addresses 19204 Sahler St. Elkhorn, NE 68022 Department of Biostatistics College of Public Health University of Nebraska Medical Center 984375 Nebraska Medical Center, Omaha, NE 68198-4375 Phone: (402) 836-9380 Email: [email protected] Education BS Computational Mathematics, Fundan University, China 1985 MS Computational Mathematics, Fundan University, China 1988 MS Applied Mathematics, Florida State University 1994 PhD Statistics, University of Washington 1998 Academic Appointments 07/2019 – current Professor & Chair, Department of Biostatistics, University of Nebraska Medical Center 08/2020 – current Professor & Acting Chair, Department of Epidemiology, University of Nebraska Medical Center 01/2014 – 06/2019 Professor & Director of Graduate Education, Department of Biostatistics, Indiana University 07/2010 - 06/2014 Professor, Department of Biostatistics, Program of Health Informatics and Program of Applied Mathematics, The University of Iowa 07/2004 – 06/2010 Associate Professor, Department of Biostatistics, The University of Iowa College of Public Health 08/1998 – 06/2004 Assistant Professor, Department of Statistics and Actuarial Science, University of Central Florida 06/1997 – 09/1997 Applied Statistician, Applied Statistics Group, The Boeing Company 09/1988 – 07/1991 Lecturer, Department of Mathematics, Fudan University, China Honors and Awards 2018 Elected Fellow of the American Statistical Association (ASA) 2008 “Quality of Life Award” by the Oncology Nursing Society Press for the paper “Transition from Treatment to Survivorship: Effects of a Psychoeducational Intervention on Quality of Life in 1 Breast Cancer Survivors” 2008 “Faculty Teaching Award” by the College of Public Health, University of Iowa 1997 “Z.W. Birnbaum award for excellence in dissertation proposal”; awarded by the Department of Statistics, University of Washington, 10/1997.
    [Show full text]
  • Adaptive Enrichment Designs in Clinical Trials
    Annual Review of Statistics and Its Application Adaptive Enrichment Designs in Clinical Trials Peter F. Thall Department of Biostatistics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA; email: [email protected] Annu. Rev. Stat. Appl. 2021. 8:393–411 Keywords The Annual Review of Statistics and Its Application is adaptive signature design, Bayesian design, biomarker, clinical trial, group online at statistics.annualreviews.org sequential design, precision medicine, subset selection, targeted therapy, https://doi.org/10.1146/annurev-statistics-040720- variable selection 032818 Copyright © 2021 by Annual Reviews. Abstract All rights reserved Adaptive enrichment designs for clinical trials may include rules that use in- terim data to identify treatment-sensitive patient subgroups, select or com- pare treatments, or change entry criteria. A common setting is a trial to Annu. Rev. Stat. Appl. 2021.8:393-411. Downloaded from www.annualreviews.org compare a new biologically targeted agent to standard therapy. An enrich- ment design’s structure depends on its goals, how it accounts for patient heterogeneity and treatment effects, and practical constraints. This article Access provided by University of Texas - M.D. Anderson Cancer Center on 03/10/21. For personal use only. first covers basic concepts, including treatment-biomarker interaction, pre- cision medicine, selection bias, and sequentially adaptive decision making, and briefly describes some different types of enrichment. Numerical illus- trations are provided for qualitatively different cases involving treatment- biomarker interactions. Reviews are given of adaptive signature designs; a Bayesian design that uses a random partition to identify treatment-sensitive biomarker subgroups and assign treatments; and designs that enrich superior treatment sample sizes overall or within subgroups, make subgroup-specific decisions, or include outcome-adaptive randomization.
    [Show full text]
  • Department of Statistics and Data Science Promotion and Tenure Guidelines
    Approved by Department 12/05/2013 Approved by Faculty Relations May 20, 2014 UFF Notified May 21, 2014 Effective Spring 2016 2016-17 Promotion Cycle Department of Statistics and Data Science Promotion and Tenure Guidelines The purpose of these guidelines is to give explicit definitions of what constitutes excellence in teaching, research and service for tenure-earning and tenured faculty. Research: The most common outlet for scholarly research in statistics is in journal articles appearing in refereed publications. Based on the five-year Impact Factor (IF) from the ISI Web of Knowledge Journal Citation Reports, the top 50 journals in Probability and Statistics are: 1. Journal of Statistical Software 26. Journal of Computational Biology 2. Econometrica 27. Annals of Probability 3. Journal of the Royal Statistical Society 28. Statistical Applications in Genetics and Series B – Statistical Methodology Molecular Biology 4. Annals of Statistics 29. Biometrical Journal 5. Statistical Science 30. Journal of Computational and Graphical Statistics 6. Stata Journal 31. Journal of Quality Technology 7. Biostatistics 32. Finance and Stochastics 8. Multivariate Behavioral Research 33. Probability Theory and Related Fields 9. Statistical Methods in Medical Research 34. British Journal of Mathematical & Statistical Psychology 10. Journal of the American Statistical 35. Econometric Theory Association 11. Annals of Applied Statistics 36. Environmental and Ecological Statistics 12. Statistics in Medicine 37. Journal of the Royal Statistical Society Series C – Applied Statistics 13. Statistics and Computing 38. Annals of Applied Probability 14. Biometrika 39. Computational Statistics & Data Analysis 15. Chemometrics and Intelligent Laboratory 40. Probabilistic Engineering Mechanics Systems 16. Journal of Business & Economic Statistics 41.
    [Show full text]
  • Rank Full Journal Title Journal Impact Factor 1 Journal of Statistical
    Journal Data Filtered By: Selected JCR Year: 2019 Selected Editions: SCIE Selected Categories: 'STATISTICS & PROBABILITY' Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Eigenfactor Total Cites Factor Score Journal of Statistical Software 1 25,372 13.642 0.053040 Annual Review of Statistics and Its Application 2 515 5.095 0.004250 ECONOMETRICA 3 35,846 3.992 0.040750 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 4 36,843 3.989 0.032370 JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY 5 25,492 3.965 0.018040 STATISTICAL SCIENCE 6 6,545 3.583 0.007500 R Journal 7 1,811 3.312 0.007320 FUZZY SETS AND SYSTEMS 8 17,605 3.305 0.008740 BIOSTATISTICS 9 4,048 3.098 0.006780 STATISTICS AND COMPUTING 10 4,519 3.035 0.011050 IEEE-ACM Transactions on Computational Biology and Bioinformatics 11 3,542 3.015 0.006930 JOURNAL OF BUSINESS & ECONOMIC STATISTICS 12 5,921 2.935 0.008680 CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 13 9,421 2.895 0.007790 MULTIVARIATE BEHAVIORAL RESEARCH 14 7,112 2.750 0.007880 INTERNATIONAL STATISTICAL REVIEW 15 1,807 2.740 0.002560 Bayesian Analysis 16 2,000 2.696 0.006600 ANNALS OF STATISTICS 17 21,466 2.650 0.027080 PROBABILISTIC ENGINEERING MECHANICS 18 2,689 2.411 0.002430 BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY 19 1,965 2.388 0.003480 ANNALS OF PROBABILITY 20 5,892 2.377 0.017230 STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 21 4,272 2.351 0.006810 JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 22 4,369 2.319 0.008900 STATISTICAL METHODS IN
    [Show full text]