Introduction to Color Management with PDF Files Preparation of Media

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Color Management with PDF Files Preparation of Media ColorLogic GmbH Introduction to Color Management with PDF files Preparation of Media-Neutral PDF Files 2 Impressum Copyright © 2013 ColorLogic GmbH. All rights reserved. Reproduction of this information - including excerpts thereof - is only permitted with express, written consent. ColorLogic GmbH assumes no liability whatsoever for the accuracy of the information contained herein as regards the details and descriptions of stan- dards and third-party products. Adobe, Acrobat, Photoshop, Postscript and PDF are registered trademarks of Adobe Systems Inc. Windows, Windows XP and Windows 7 are either regis- tered trademarks or trademarks of Microsoft Corporation in the USA and/ or other countries. Apple, Macintosh, Power Macintosh, MacOS, MacOSX and ColorSync are trademarks of Apple Computer Inc. in the USA and/or other countries. PANTONE© and other Pantone trademarks are the property of X-Rite Inc. All other trademarks are the property of the respective owners. 2nd Edition, Version 4.0, March 2013 Content 3 Introduction to color management with PDF files Color spaces for objects and the complete document ......................................4 Rendering intents for ICCbased color spaces .................................................5 Spot colors, DeviceN and alternate color spaces ..........................................5 The different PDF/X versions ..............................................................................6 Converting and optimizing PDF files .................................................................8 Color management problems in the PDF workflow ..........................................8 1. Lack of black point compensation .................................................................9 2. Problems when handling black and gray .....................................................10 3. Unsatisfactory quality of ICC-based CMYK-to-CMYK conversions ......................................................................................................10 4. Special features of the overprinting model in PDF files ..........................11 5. Differences in gamut mapping when combining profiles from different manufacturers.........................................................................12 6. The soft proofing problem with Multicolor separations .........................13 7. Transparencies ...................................................................................................13 Transparencies in the PDF/X workflow and color management ...................14 Special features of the color management of PDF files with flattened transparencies..................................................................................14 Special features of the color management of PDF files including transparencies ...................................................................................................15 Suggestion for applying SaveInk or TAC reduction to PDF files with transparencies .................................................................................16 Preparation of media-neutral PDF files Preliminary thoughts on media-neutral PDF generation .................................18 1. Generation of media-neutral PDF files and color conversion to CMYK ............................................................................................................19 2. Realization of simple, reliable and efficient production ...........................19 Important and less important colors in the layout ......................................19 Media-neutral production in the CMYK workflow ...........................................20 Advantages of the CMYK method ...................................................................21 Media-neutral production in the RGB workflow ...............................................22 Advantages of the RGB method .......................................................................23 The RGB workflow in Adobe Photoshop, InDesign and ZePrA ....................24 1. Selection of the perceptual rendering strategy .........................................24 ColorLogic Black Point Compensation ...........................................................24 ColorLogic Absolute Compression .................................................................24 DeviceLink-based conversion from RGB to CMYK..........................................25 2. Soft proof and proof of an RGB master image .........................................26 3. Composition of master documents in InDesign .......................................27 4. Color conversion of the master documents in ZePrA ...........................28 5. Switching between true spot colors and their CMYK rendering .........30 Printing spot colors as process colors .................................................................31 4 Introduction to color management with PDF files PDF is the most versatile, but also the most complex, data format in the gra- phic arts industry. It is a standard format for submitting printing data to print- shops, and is also used for many other applications if it is important to view, print and archive complex documents in a fixed layout on different operating systems. The PDF format was originally invented by the Adobe company. In 2001, Adobe decided to include the format in ISO standardization, making PDF an open, vendor-independent format. Depending on application, there are different PDF versions in ISO standardization that only permit certain types of PDF files in order to reduce the complexity and permit more robust use. The most important ISO Standards for PDF are: • ISO 32000: PDF 1.7 without restrictions, for the most flexible possible use • ISO 15930 - PDF/X: PDF files for exchanging printing data • ISO 19005 - PDF/A: PDF files for archiving documents The sections below concentrate on PDF files for exchanging printing data, and thus on PDF/X. Color spaces for objects and the complete document Internally, a PDF file consists of numerous individual objects. In the case of printing data, they can be images, vector graphics, and text objects. As regards the color space, various options are available for every single object. This ma- kes PDF a highly complex file format, especially when it comes to color, with considerable potential for errors in the event of incorrect operation. Apart from there being fundamental differences in the nature of the color space, such as Gray, RGB, CMYK, Lab or spot color, individual PDF objects can also have individual ICC profiles. The table below provides an overview of the most important color spaces in PDF files for print production. Without ICC profile With ICC profile Gray DeviceGray ICCbasedGray RGB DeviceRGB ICCbasedRGB CMYK DeviceCMYK ICCbasedCMYK Lab - - Spot color DeviceN - 5 For submitting color-managed printing data, it is essential that colors in a PDF file be unequivocally defined with the help of color profiles. The ISO 15930 or PDF/X standard introduced an additional Document Color Space, also known as the Output Intent, to supplement the color spaces of individual PDF objects. As a rule, the output intent is an ICC profile that describes the output color space for which the PDF file was created. The output intent is often used incorrectly in practice, in that the profile for the required output intent is entered instead. If, for example, all the CMYK data are in the ISO Coated V2 color space, but the PDF file is to be printed by the newspaper printing process, the output intent still has to be set to ISO Coated V2, rather than ISO Newspaper. Conversion from ISO Coated V2 to ISO Newspaper can be performed with the help of DeviceLink profiles in ColorLogic ZePrA. Rendering intents for ICCbased color spaces If individual PDF objects with embedded profiles are present, a conversion method (rendering intent) is also assigned to each of these individual objects. These are the four rendering intents specified in theICC standard. The addi- tional Black Point Compensation used specifically in Adobe applications cannot be selected in current ISO-compliant PDF files (status 2011) and workflows. The section on PDF and color management problems on page 8 goes into more detail on this subject. For special applications, where the com- position of layout documents and subsequent PDF generation take place un- der controlled conditions, it may make sense to use other rendering intents than defined in the ICC standard. Additional rendering intents are available in the ZePrA workflow product, for example, and discussed in greater detail on Media-neutral production on page 18. Spot colors, DeviceN and alternate color spaces Spot color patches with It is possible to print not only with CMYK on the press, but also with spot alternate CMYK colors. colors. The corresponding color space description in the PDF format is DeviceN. To simplify the rendering of spot colors with a viewer on a monitor, or on a printer without true spot colors, a DeviceN color space additionally has what is known as an Alternate Color Space. This alternate color space is ge- nerally either a CMYK or a Lab color space. 6 The DeviceN color space additionally includes a formula (Tint Transform) that enables a viewer to convert from DeviceN to the alternate color space. In the simplest case, the DeviceN color space has one channel (separation or spot color), the alternate color space being created with a CMYK color, and the formula is a multiplication of the color value. For instance, if an alternate color for 100% of the spot color is defined as C100 M50 Y0
Recommended publications
  • Color Management
    Color Management hotoshop 5.0 was justifiably praised as a ground- breaking upgrade when it was released in the summer of 1998, although the changes made to the color P management setup were less well received in some quarters. This was because the revised system was perceived to be complex and unnecessary. Bruce Fraser once said of the Photoshop 5.0 color management system ‘it’s push-button simple, as long as you know which of the 60 or so buttons to push!’ Attitudes have changed since then (as has the interface) and it is fair to say that most people working today in the pre-press industry are now using ICC color profile managed workflows. The aim of this chapter is to introduce the basic concepts of color management before looking at the color management interface in Photoshop and the various color management settings. 1 Color management Adobe Photoshop CS6 for Photographers: www.photoshopforphotographers.com The need for color management An advertising agency art buyer was once invited to address a meeting of photographers. The chair, Mike Laye, suggested we could ask him anything we wanted, except ‘Would you like to see my book?’ And if he had already seen your book, we couldn’t ask him why he hadn’t called it back in again. And if he had called it in again we were not allowed to ask why we didn’t get the job. And finally, if we did get the job we were absolutely forbidden to ask why the color in the printed ad looked nothing like the original photograph! That in a nutshell is a problem which has bugged many of us throughout our working lives, and it is one which will be familiar to anyone who has ever experienced the difficulty of matching colors on a computer display with the original or a printed output.
    [Show full text]
  • Cielab Color Space
    Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces.
    [Show full text]
  • Harlequin RIP OEM Manual
    0RIPMate for Windows operating systems Harlequin PLUS Server RIP v9.0 June 2011 AG12325 Rev. 13 Copyright and Trademarks Harlequin PLUS Server RIP June 2011 Part number: HK‚9.0‚ÄìOEM‚ÄìWIN Document issue: 106 Copyright ¬© 2011 Global Graphics Software Ltd. All rights reserved. Certificate of Computer Registration of Computer Software. Registration No. 2006SR05517 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec- tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Global Graphics Software Ltd. The information in this publication is provided for information only and is subject to change without notice. Global Graphics Software Ltd and its affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The software described in this book is furnished under license and may only be used or cop- ied in accordance with the terms of that license. Harlequin is a registered trademark of Global Graphics Software Ltd. The Global Graphics Software logo, the Harlequin at Heart Logo, Cortex, Harlequin RIP, Harlequin ColorPro, EasyTrap, FireWorks, FlatOut, Harlequin Color Management System (HCMS), Harlequin Color Production Solutions (HCPS), Harlequin Color Proofing (HCP), Harlequin Error Diffusion Screening Plugin 1-bit (HEDS1), Harlequin Error Diffusion Screening Plugin 2-bit (HEDS2), Harlequin Full Color System (HFCS), Harlequin ICC Profile Processor (HIPP), Harlequin Standard Color System (HSCS), Harlequin Chain Screening (HCS), Harlequin Display List Technology (HDLT), Harlequin Dispersed Screening (HDS), Harlequin Micro Screening (HMS), Harlequin Precision Screening (HPS), HQcrypt, Harlequin Screening Library (HSL), ProofReady, Scalable Open Architecture (SOAR), SetGold, SetGoldPro, TrapMaster, TrapWorks, TrapPro, TrapProLite, Harlequin RIP Eclipse Release and Harlequin RIP Genesis Release are all trademarks of Global Graphics Software Ltd.
    [Show full text]
  • Preparing Images for Delivery
    TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives.
    [Show full text]
  • Dalmatian's Definitions
    T H E B L A C K & W H I T E P A P E R S D A L M A T I A N ’ S D E F I N I T I O N S 8 BIT A bit is the possible number of colors or tones assigned to each pixel. In 8 bit files, 1 of 256 tones is assigned to each pixel. 8-bit Jpeg is the default setting for most cameras; whenever possible set the camera to RAW capture for the best image capture possible. 16 BIT A bit is the possible number of colors or tones assigned to each pixel. In 16 bit files, 1 of 65,536 tones are assigned to each pixel. 16 bit files have the greatest range of tonalities and a more realistic interpretation of continuous tone. Note the increase in tonalities from 8 bit to 16 bit. If your aim is the quality of the image, then 16 bit is a must. ADOBE 1998 COLOR SPACE Adobe ‘98 is the preferred RGB color space that places the captured and therefore printable colors within larger parameters, rendering approximately 50% the visible color space of the human eye. Whenever possible, change the camera’s default sRGB setting to Adobe 1998 in order to increase available color capture. Whenever possible change this setting to Adobe 1998 in order to increase available color capture. When an image is captured in sRGB, it is best to leave the color space unchanged so color rendering is unaffected. ARCHIVAL Archival materials are those with a neutral pH balance that will not degrade over time and are resistant to UV fading.
    [Show full text]
  • The Printer's Guide to Expanded Gamut
    DISTRIBUTED BY TECHKON USA February 2017 THE PRINTER’S GUIDE TO EXPANDED GAMUT Understanding the technology landscape and implementation approach By Ron Ellis Printer’s Guide to Expanded Gamut Page | 1 Printer’s Guide to Expanded Gamut Whitepaper By Ron Ellis Table of Contents What is Expanded Gamut ............................................................................................................... 4 ......................................................................................................................................................... 5 Why Expanded Gamut .................................................................................................................... 6 The Current Expanded Gamut Landscape ...................................................................................... 9 Standardization and Expanded Gamut ......................................................................................... 10 Methods of Producing Expanded Gamut...................................................................................... 11 Techkon and Expanded Gamut ..................................................................................................... 11 CMYK expanded gamut ................................................................................................................. 12 The CMYK Expanded Gamut Workflow ........................................................................................ 16 Conversion from source to CMYK Expanded gamut ....................................................................
    [Show full text]
  • Specification of Srgb
    How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]
  • HD-SDI, HDMI, and Tempus Fugit
    TECHNICALL Y SPEAKING... By Steve Somers, Vice President of Engineering HD-SDI, HDMI, and Tempus Fugit D-SDI (high definition serial digital interface) and HDMI (high definition multimedia interface) Hversion 1.3 are receiving considerable attention these days. “These days” really moved ahead rapidly now that I recall writing in this column on HD-SDI just one year ago. And, exactly two years ago the topic was DVI and HDMI. To be predictably trite, it seems like just yesterday. As with all things digital, there is much change and much to talk about. HD-SDI Redux difference channels suffice with one-half 372M spreads out the image information The HD-SDI is the 1.5 Gbps backbone the sample rate at 37.125 MHz, the ‘2s’ between the two channels to distribute of uncompressed high definition video in 4:2:2. This format is sufficient for high the data payload. Odd-numbered lines conveyance within the professional HD definition television. But, its robustness map to link A and even-numbered lines production environment. It’s been around and simplicity is pressing it into the higher map to link B. Table 1 indicates the since about 1996 and is quite literally the bandwidth demands of digital cinema and organization of 4:2:2, 4:4:4, and 4:4:4:4 savior of high definition interfacing and other uses like 12-bit, 4096 level signal data with respect to the available frame delivery at modest cost over medium-haul formats, refresh rates above 30 frames per rates. distances using RG-6 style video coax.
    [Show full text]
  • Basics of Color Management
    Application Notes Basics of Color Management Basics of Color Management ErgoSoft AG Moosgrabenstr. 13 CH-8595 Altnau, Switzerland © 2010 ErgoSoft AG, All rights reserved. The information contained in this manual is based on information available at the time of publication and is sub- ject to change without notice. Accuracy and completeness are not warranted or guaranteed. No part of this manual may be reproduced or transmitted in any form or by any means, including electronic me- dium or machine-readable form, without the expressed written permission of ErgoSoft AG. Brand or product names are trademarks of their respective holders. The ErgoSoft RIP is available in different editions. Therefore the description of available features in this document does not necessarily reflect the license details of your edition of the ErgoSoft RIP. For information on the features included in your edition of the ErgoSoft RIPs refer to the ErgoSoft homepage or contact your dealer. Rev. 1.1 Basics of Color Management i Contents Introduction ................................................................................................................................................................. 1 Color Spaces ................................................................................................................................................................ 1 Basics ........................................................................................................................................................................ 1 CMYK .......................................................................................................................................................................
    [Show full text]
  • Color Images, Color Spaces and Color Image Processing
    color images, color spaces and color image processing Ole-Johan Skrede 08.03.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides by Fritz Albregtsen today’s lecture ∙ Color, color vision and color detection ∙ Color spaces and color models ∙ Transitions between color spaces ∙ Color image display ∙ Look up tables for colors ∙ Color image printing ∙ Pseudocolors and fake colors ∙ Color image processing ∙ Sections in Gonzales & Woods: ∙ 6.1 Color Funcdamentals ∙ 6.2 Color Models ∙ 6.3 Pseudocolor Image Processing ∙ 6.4 Basics of Full-Color Image Processing ∙ 6.5.5 Histogram Processing ∙ 6.6 Smoothing and Sharpening ∙ 6.7 Image Segmentation Based on Color 1 motivation ∙ We can differentiate between thousands of colors ∙ Colors make it easy to distinguish objects ∙ Visually ∙ And digitally ∙ We need to: ∙ Know what color space to use for different tasks ∙ Transit between color spaces ∙ Store color images rationally and compactly ∙ Know techniques for color image printing 2 the color of the light from the sun spectral exitance The light from the sun can be modeled with the spectral exitance of a black surface (the radiant exitance of a surface per unit wavelength) 2πhc2 1 M(λ) = { } : λ5 hc − exp λkT 1 where ∙ h ≈ 6:626 070 04 × 10−34 m2 kg s−1 is the Planck constant. ∙ c = 299 792 458 m s−1 is the speed of light. ∙ λ [m] is the radiation wavelength. ∙ k ≈ 1:380 648 52 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant. T ∙ [K] is the surface temperature of the radiating Figure 1: Spectral exitance of a black body surface for different body.
    [Show full text]
  • Deep Learning-Based Color Holographic Microscopy
    Deep learning-based color holographic microscopy Tairan Liu1,2,3†, Zhensong Wei1†, Yair Rivenson1,2,3†,*, Kevin de Haan1,2,3, Yibo Zhang1,2,3, Yichen Wu1,2,3, and Aydogan Ozcan1,2,3,4,* † Equally contributing authors * Corresponding authors: [email protected] ; [email protected] 1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA. 2Bioengineering Department, University of California, Los Angeles, CA, 90095, USA. 3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA. 4Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. Abstract We report a framework based on a generative adversarial network (GAN) that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related arti- facts, and generates an accurate color transformation for the reconstructed image. Our framework is ex- perimentally demonstrated using lung and prostate tissue sections that are labeled with different histo- logical stains. This framework is envisaged to be applicable to point-of-care histopathology, and pre- sents a significant improvement in the throughput of coherent microscopy systems given that only a sin- gle hologram of the specimen is required for accurate color imaging. 1. INTRODUCTION Histological staining of fixed, thin tissue sections mounted on glass slides is one of the fundamental steps required for the diagnoses of various medical conditions. Histological stains are used to highlight the constituent tissue parts by enhancing the colorimetric contrast of cells and subcellular components for microscopic inspection.
    [Show full text]