SEED LEAFLET Bischofia Javanica Blume
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of Project Boundary to Facilitate Measuring and Monitoring of Carbon Stocks
DETERMINATION OF PROJECT BOUNDARY TO FACILITATE MEASURING AND MONITORING OF CARBON STOCKS Ari Wibowo RM Wiwied Widodo Nugroho ITTO PD 519/08/Rev.1 (F): In Cooperation with Forestry Research and Development Agency Ministry of Forestry, Indonesia Bogor, 2010 DETERMINATION OF PROJECT BOUNDARY TO FACILITATE MEASURING AND MONITORING OF CARBON STOCKS ISBN 978-602-95842-6-4 Technical Report No 3. Bogor, May 2010. By: Ari Wibowo, RM Wiwied Widodo, and Nugroho This report is a part of Program “Tropical Forest Conservation for Reducing Emissions from Deforestation and Forest Degradation and Enhancing Carbon Stocks in Meru Betiri National Park, Indonesia” Collaboration between: • Pusat Penelitian Sosial Ekonomi dan Kebijakan Departemen Kehutanan (Center For Socio Economic and Policy on Forestry Research Ministry of Forestry) Jl. Gunung Batu No. 5 Bogor West Java Indonesia Phone : +62-251-8633944 Fax. : +62-251-8634924 Email : [email protected] Website : HUhttp://ceserf-itto.puslitsosekhut.web.idU • LATIN – the Indonesian Tropical Institute Jl. Sutera No. 1 Situgede Bogor West Java Indonesia Phone : +62-251-8425522/8425523 Fax. : +62-251-8626593 Emai : [email protected] and [email protected] Website : HUwww.latin.or.idUH • Meru Betiri National Park Department of Forestry Jalan Siriwijaya 53, Jember, East Java, Indonesia Phone : +62-331-335535 Fax. : +62-331-335535 Email : [email protected] Website : HUwww.merubetiri.comU This work is copyright. Except for the logos, graphical and textual information in this publication may be reproduced in whole or in part provided that it is not sold or put to commercial use and its source is acknowledged. LIST OF CONTENT LIST OF CONTENT .................................................................................. -
Species Composition, Diversity, and Stand Structure of Tropical Lower Montane Forests Resulting from Various Human Impacts on the Shan Plateau, Eastern Myanmar
ISSN : 0917-415X DOI:10.3759/tropics.MS17-03 TROPICS Vol. 26 (3) 71-82 Issued December 1, 2017 ORIGINAL ARTICLE Species composition, diversity, and stand structure of tropical lower montane forests resulting from various human impacts on the Shan Plateau, eastern Myanmar Phyu Phyu Lwin1, 2* and Mamoru Kanzaki1 1 Graduate School of Agriculture, Kyoto University, Kyoto 606‒8502, Japan 2 Present address: Forest Research Institute, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar * Corresponding author: [email protected] Received: May 30, 2017 Accepted: October 2, 2017 ABSTRACT We observed species composition, diversity, and stand structure in the tropical lower montane forests of a hilly region in eastern Myanmar and examined the impacts of anthropogenic disturbances on the forest stands. From our survey of 58 sample plots (30 m×30 m), we categorized four stand types using nonmetric multi-dimensional scaling (NMS) ordination. The four stand types exhibited significant contributions of various anthropogenic impacts, reflecting differences in local livelihoods within different varying landscapes. Anthropogenic disturbances, especially the extraction of firewood, can significantly affect the stand structure of forests and, in turn, the species composition and tree diversity. Some early successional species such as Phyllanthus albizzioides and Albizia odoratissima became indicator species of highly disturbed forests. As firewood is mainly extracted from privately owned forests rather than communal forests, land tenure was also an important factor governing the intensity of anthropogenic disturbances. Species richness and diversity values decreased in stand types exposed to more severe anthropogenic disturbances. Stem density was significantly higher in highly disturbed forests. This was a result of higher numbers of multi-stemmed individuals, which revealed the effect of cutting larger stems for firewood extraction. -
Highlights Section Reports
DACS-P-00124 Volume 54, Number 5, September - October 2015 DPI’s Bureau of Entomology, Nematology and Plant Pathology (the botany section is included in this bureau) produces TRI- OLOGY six times a year, covering two months of activity in each issue. The report includes detection activities from nursery plant inspections, routine and emergency program surveys, and requests for identification of plants and pests from the public. Samples are also occasionally sent from other states or countries for identification or diagnosis. Highlights Following are a few of the notable entries from this Section Reports volume of TRI-OLOGY. These entries are reports of interesting plants or unusual pests, some of Botany 2 which may be problematic. See Section Reports for complete information. Entomology 6 Bactrocera dorsalis, Oriental fruit fly, Bactrocera dorsalis, Oriental fruit fly. Based on female Nematology 10 Photograph courtesy of Gary J. Steck, the large number of flies detected in a concentrated DPI area of the Redland Agricultural District in late Plant Pathology 12 August, a quarantine area regulating the movement of oriental fruit fly host plants was established on 4 September 2015. All entities within the quarantine area of 98 square miles that are involved with the production, sale or distribution of oriental fruit fly host material have been placed under a compliance agreement outlining operational procedures and Pseudocercospora artanthes typical program requirements. irregular leaf spots caused by the fungal pathogen on Piper auritum (Vera Cruz Pseudocercospora artanthes (leaf spot) was found pepper). infecting Piper auritum (Vera Cruz pepper) at the Photograph courtesy of Robert M. Leahy, USDA Jacksonville Zoo and Gardens in Duval County. -
Exempted Trees List
Prohibited Plants List The following plants should not be planted within the City of North Miami. They do not require a Tree Removal Permit to remove. City of North Miami, 2017 Comprehensive List of Exempted Species Pg. 1/4 Scientific Name Common Name Abrus precatorius Rosary pea Acacia auriculiformis Earleaf acacia Adenanthera pavonina Red beadtree, red sandalwood Aibezzia lebbek woman's tongue Albizia lebbeck Woman's tongue, lebbeck tree, siris tree Antigonon leptopus Coral vine, queen's jewels Araucaria heterophylla Norfolk Island pine Ardisia crenata Scratchthroat, coral ardisia Ardisia elliptica Shoebutton, shoebutton ardisia Bauhinia purpurea orchid tree; Butterfly Tree; Mountain Ebony Bauhinia variegate orchid tree; Mountain Ebony; Buddhist Bauhinia Bischofia javanica bishop wood Brassia actino-phylla schefflera Calophyllum antillanum =C inophyllum Casuarina equisetifolia Australian pine Casuarina spp. Australian pine, sheoak, beefwood Catharanthus roseus Madagascar periwinkle, Rose Periwinkle; Old Maid; Cape Periwinkle Cestrum diurnum Dayflowering jessamine, day blooming jasmine, day jessamine Cinnamomum camphora Camphortree, camphor tree Colubrina asiatica Asian nakedwood, leatherleaf, latherleaf Cupaniopsis anacardioides Carrotwood Dalbergia sissoo Indian rosewood, sissoo Dioscorea alata White yam, winged yam Pg. 2/4 Comprehensive List of Exempted Species Scientific Name Common Name Dioscorea bulbifera Air potato, bitter yam, potato vine Eichhornia crassipes Common water-hyacinth, water-hyacinth Epipremnum pinnatum pothos; Taro -
Proceedings of the First International Workshop on Biological Control of Chromolaena Odorata
PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON BIOLOGICAL CONTROL OF CHROMOLAENA ODORATA February 29 - March 4, 1988 Bangkok, Thailand Proceedings of the First International Workshop on Biological Control of Chromolaena odorata February 29 through March 4, 1988 Bangkok, Thailand Sponsored by Australian Centre for International Agricultural Research Canberra, Australia National Research Council and the National Biological Control Research Center (NBCRC) Bangkok, Thailand Tropical and Subtropical Agricultural Research Program Cooperative State Research Service (83-CRSR-2-2291) United States Department of Agriculture Washington, D.C. and the Agricultural Experiment Station Guam Edited by R. Muniappan Published by Agricultural Experiment Station Mangilao, Guam 96923 U.S.A. July 1988 Above: Manual control of Chromolaena odorata in Mangalore, India, December 1984. Center: C. odorata defoliated by Pareuchaetes pseudoinslata in Guam 1987. Bottom: P. pseudoinsulata defoliated and dried C. odorata in a pasture at Rota, May 1987. 11 TABLE OF CONTENTS Workshop, Program 1 List of Participants 3 Introduction 5 - History and distribution of Chromolaena odorata 7 - Ecology of Chromolaena odorata in the Neotropics 13 - Ecology of Chromolaena odorata in Asia and the Pacific 21 - Prospects for the biological control of Chromolaena odorata (L.) R.M. King and H. Robinson 25 - A review of mechanical and chemical control of Chromolaena odorata in South Africa 34 - Rearing, release and monitoring Pareuchaetes pseudoinsulata 41 - Assessment of Chromolaena -
Chemical Composition, Mineral and Nutritional Value of Wild Bischofia Javanicaseed 1Indra, R., 1,2*Bachheti, R
International Food Research Journal 20(4): 1747-1751 (2013) Journal homepage: http://www.ifrj.upm.edu.my Chemical composition, mineral and nutritional value of wild Bischofia javanica seed 1Indra, R., 1,2*Bachheti, R. K. and 1,2Archana, J. 1Department of Chemistry, Graphic Era University, Dehradun, Uttarakhand, India 2College of Natural and Computational Science, Haramaya University Ethiopia Article history Abstract Received: 2 January 2013 The present study investigates chemical composition, mineral and nutritional value of Bischofia Received in revised form: javanica seed cultivated in northern India. The seed contains protein 18.69%; carbohydrates 28 February 2013 18.91%, crude fiber 5.32% and ash 6.83%. The seed contains phosphorous 391.4 mg/100 Accepted: 1 March 2013 gm, calcium 710 mg/100 gm, magnesium 610 mg/100 gm, copper 2.43 mg/100 gm, Iron 2.33 mg/100 gm, potassium 1.25 mg/100 gm, zinc 1.4 mg/100 gm and sodium: 0.08 mg/100 gm Keywords .The physico-chemical characteristics of seed oil measured include saponification value: 289.3, iodine value 178.3, acid value 6.59 (mg KOH/gm) refractive index: 1.48. The yield Bischofia javanica of seed oil was 20.1%, The oil extracted from the seeds of Bischofia javanica was analysed Seed oil for its chemical composition by Gas chromatograph mass spectroscopy (GCMS), The fatty Chemical composition acids in seed oil were identified as- Linolenic acid 56.76%, Palmitic acid 12.28%, Linoleic Mineral acid 12.90%, Oleic acid 12.19%, and Stearic acid 3.86%.This study conclude that Bischofia Nutritional value GCMS javanica seeds are good source of food nutrients such as: minerals, proteins and carbohydrates. -
(Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus Sensu Lato [Glochidion]) in Southeastern Polynesia
Coevolutionary Diversification of Leafflower Moths (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in Southeastern Polynesia By David Howard Hembry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rosemary Gillespie, Chair Professor Bruce Baldwin Professor Patrick O’Grady Spring 2012 1 2 Abstract Coevolution between phylogenetically distant, yet ecologically intimate taxa is widely invoked as a major process generating and organizing biodiversity on earth. Yet for many putatively coevolving clades we lack knowledge both of their evolutionary history of diversification, and the manner in which they organize themselves into patterns of interaction. This is especially true for mutualistic associations, despite the fact that mutualisms have served as models for much coevolutionary research. In this dissertation, I examine the codiversification of an obligate, reciprocally specialized pollination mutualism between leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) on the oceanic islands of southeastern Polynesia. Leafflower moths are the sole known pollinators of five clades of leafflowers (in the genus Phyllanthus s. l., including the genera Glochidion and Breynia), and thus this interaction is considered to be obligate. Female moths actively transfer pollen from male flowers to female flowers, using a haired proboscis to transfer pollen into the recessed stigmatic surface at the end of the fused stylar column. The moths then oviposit into the flowers’ ovaries, and the larva which hatches consumes a subset, but not all, of the developing fruit’s seed set. -
Phyllanthaceae
Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Phyllanthaceae Family Profile Phyllanthaceae Family Description A family of 59 genera and 1745 species, pantropiocal but especially in Malesia. Genera Actephila - A genus of about 20 species in Asia, Malesia and Australia; about ten species occur naturally in Australia. Airy Shaw (1980a, 1980b); Webster (1994b); Forster (2005). Antidesma - A genus of about 170 species in Africa, Madagascar, Asia, Malesia, Australia and the Pacific islands; five species occur naturally in Australia. Airy Shaw (1980a); Henkin & Gillis (1977). Bischofia - A genus of two species in Asia, Malesia, Australia and the Pacific islands; one species occurs naturally in Australia. Airy Shaw (1967). Breynia - A genus of about 25 species in Asia, Malesia, Australia and New Caledonia; seven species occur naturally in Australia. Backer & Bakhuizen van den Brink (1963); McPherson (1991); Webster (1994b). Bridelia - A genus of about 37 species in Africa, Asia, Malesia and Australia; four species occur naturally in Australia. Airy Shaw (1976); Dressler (1996); Forster (1999a); Webster (1994b). Cleistanthus - A genus of about 140 species in Africa, Madagascar, Asia, Malesia, Australia, Micronesia, New Caledonia and Fiji; nine species occur naturally in Australia. Airy Shaw (1976, 1980b); Webster (1994b). Flueggea - A genus of about 16 species, pantropic but also in temperate eastern Asia; two species occur naturally in Australia. Webster (1984, 1994b). Glochidion - A genus of about 200 species, mainly in Asia, Malesia, Australia and the Pacific islands; about 15 species occur naturally in Australia. -
Tree Species Diversity and Distribution Patterns in Tropical Forests of Garo Hills
RESEARCH ARTICLES Tree species diversity and distribution patterns in tropical forests of Garo Hills Ashish ~urnar''~**,Bruce G. ~arcot)and Ajai saxenals4 'wildlife Institute of India, Post Box 18, Chandrabani, Dehradun 248 001, India 'present Address: National Tiger ConservationAuthority, Bikaner House, Annexe 5, Shahjahan Road, New Delhi 110 01 1, India 'USDA Forest Service, Pacific Northwest Research Station, 620 S.W. Main Street, Portland, OR 97205, USA 'Present address: Department of Ocean Development, Block 12, C.G.O. Complex, Lodhi Road, New Delhi 110 003, India pressure, particularly shifting cultivation (locally known We analysed phytosociological characteristics and diver- sity patterns of tropical forest tree species in Garo asjhzun)'. Nevertheless, pristine PFs of Garo Hills still occur Hills, western Meghalaya, Northeast India. The main as remnant patches in remote localities mainly in the inte- vegetation of the region included primary forests rior hills. SF growth originates from many years of prac- (PFs), secondary forests (SFs), and sal (Shoreu ro- tising jhm, resulting in patches of various forest ages bust~)plantations, with 162, 132, and 87 tree species dispersed across the area. Many recent studies4-' have des- respectively. The Shannon-Wiener diversity index of cribed vegetation characteristics and diversity of the tropical trees in PF was 4.27 (n = 21 one-ha belt-transects), forests of India and other parts of the world. Meghalaya, which is comparable to the world's richest tropical however, has remained, largely unstudied, except for our forests. Statistical results revealed that primary for- work and another landscape level asse~sment".~.Here, we ests were more tree-rich and diverse than secondary present empirical data on diversity of tree species in the forests or sal plantations. -
Journal Arnold Arboretum
JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY G. SCHUBERT T. G. HARTLEY PUBLISHED BY THE ARNOLD ARBORETUM OF HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS DATES OF ISSUE No. 1 (pp. 1-104) issued January 13, 1967. No. 2 (pp. 105-202) issued April 16, 1967. No. 3 (pp. 203-361) issued July 18, 1967. No. 4 (pp. 363-588) issued October 14, 1967. TABLE OF CONTENTS COMPARATIVE MORPHOLOGICAL STUDIES IN DILLENL ANATOMY. William C. Dickison A SYNOPSIS OF AFRICAN SPECIES OF DELPHINIUM J Philip A. Munz FLORAL BIOLOGY AND SYSTEMATICA OF EUCNIDE Henry J. Thompson and Wallace R. Ernst .... THE GENUS DUABANGA. Don M. A. Jayaweera .... STUDIES IX SWIFTENIA I MKUACKAE) : OBSERVATION UALITY OF THE FLOWERS. Hsueh-yung Lee .. SOME PROBLEMS OF TROPICAL PLANT ECOLOGY, I Pompa RHIZOME. Martin H. Zimmermann and P. B Two NEW AMERICAN- PALMS. Harold E. Moure, Jr NOMENCLATURE NOTES ON GOSSYPIUM IMALVACE* Brizicky A SYNOPSIS OF THE ASIAN SPECIES OF CONSOLIDA CEAE). Philip A. Munz RESIN PRODUCER. Jean H. Langenheim COMPARATIVE MORPHOLOGICAL STUDIES IN DILLKNI POLLEN. William C. Dickison THE CHROMOSOMES OF AUSTROBAILLVA. Lily Eudi THE SOLOMON ISLANDS. George W. G'dUtt A SYNOPSIS OF THE ASIAN SPECIES OF DELPII STRICTO. Philip A. Munz STATES. Grady L. Webster THE GENERA OF EUPIIORBIACEAE IN THE SOT TUFA OF 1806, AN OVERLOOI EST. C. V. Morton REVISION OF THE GENI Hartley JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY T. G. HARTLEY C. E. WOOD, JR. LAZELLA SCHWARTEN Q9 ^ JANUARY, 1967 THE JOURNAL OF THE ARNOLD ARBORETUM Published quarterly by the Arnold Arboretum of Harvard University. Subscription price $10.00 per year. -
A Pilot Biodiversity Study of the Eastern Frontier Closed Area and North East New Territories, Hong Kong, June-December 2003
A Pilot Biodiversity Study of the eastern Frontier Closed Area and North East New Territories, Hong Kong, June-December 2003 A waterfall at Ng To, Kuk Po April 2004 Kadoorie Farm and Botanic Garden Publication Series: No 1 A Pilot Biodiversity Study of the eastern Frontier Closed Area and North East New Territories, June-December 2003 Editors Captain WONG, Michael LAU, Gary ADES, Bosco CHAN and NG Sai Chit Contributors (in alphabetic order) Gary ADES, Bosco CHAN, Paul CROW, Roger KENDRICK, KWOK Hon Kai, Michael LAU, LEE Kwok Shing, Wicky LEE, NG Sai Chit, Gloria SIU, Ken SO, Captain WONG Citation Kadoorie Farm and Botanic Garden. 2004. A Pilot Biodiversity Study of the eastern Frontier Closed Area and North East New Territories, Hong Kong, June-December 2003. Kadoorie Farm and Botanic Garden Publication Series No.1. Kadoorie Farm and Botanic Garden, Hong Kong Special Adminstrative Region. Copyright © Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T. Hong Kong Special Adminstrative Region April 2004 CONTENTS Page Execuitve Summary 1 Introduction 2 Methodology 5 Results and Discussion 7 Lin Ma Hang 7 San Kwai Tin 14 Kuk Po 16 So Lo Pun 20 Yung Shue Au 24 Mammal occurrence within the study areas: a comparison with 27 existing records for protected areas Summary of Findings 29 Threats 30 Opportunities and Recommendations 32 Acknowledgments 34 References 35 Figures 38 Appendices 40 Plates 67 Executive Summary A 7-day preliminary biodiversity survey was conducted between June and December 2003 at Lin Ma Hang and San Kwai Tin in the Frontier Closed Area (FCA), and Kuk Po, So Lo Pun and Yung Shue Au in North East New Territories (NENT). -
Bischofia Javanica Family: Euphorbiaceae Bishopwood
Bischofia javanica Family: Euphorbiaceae Bishopwood Other Common Names: Gintungan, Paniala (India), Aukkyu, Ye-Padauk (Burma), Nhoi (Vietnam), Term (Thailand), Tuai (Philippines), Koka (Fiji). Distribution: Widely distributed Indo-Malayan species extending into the Philippines Korea, and Polynesia. Common along streams at low and medium altitudes. The Tree: May reach a height of 100 ft but bole seldom attaining a length of 25 ft; trunk diameters of 36 in. and more are common, reaching 60 in.; without buttresses. The Wood: General Characteristics: Heartwood purple red brown, darkening to a much deeper shade on exposure; sapwood light cream colored to reddish brown, rather distinct from the heartwood. Texture moderately fine to rather coarse; grain interlocked; slightly lustrous; without distinctive odor or taste. Weight: Basic specific gravity (ovendry weight/green volume) ranges from 0.45 to 0.71, averaging about 0.56; air-dry density 34 to 54 pcf. Mechanical Properties: (2-in. standard) Moisture content Bending strength Modulus of elasticity Maximum crushing strength (%) (Psi) (1,000 psi) (Psi) Green (34) 6,920 860 3,610 12% 16,000 1,630 7,130 Green (11) 6,970 1,260 3,370 10% 14,190 1,690 8,560 Janka side hardness 915 lb for green material and 1,370 lb for dry. Forest Products Laboratory toughness 244 in.-lb green and 113 in.-lb at 12% moisture content (5/8-in. specimen). Drying and Shrinkage: Generally reported as very difficult to season; severe warp and checking, tending to collapse and honeycomb. Material from Malaya reported to season rapidly with little degrade. No data on kiln schedules available.