Er5re2c7, Tm5re2c7, and Lu5re2c7 with Sc5re2c7 Type, and Yb2rec2 with Pr2rec2 Type Structures R

Total Page:16

File Type:pdf, Size:1020Kb

Er5re2c7, Tm5re2c7, and Lu5re2c7 with Sc5re2c7 Type, and Yb2rec2 with Pr2rec2 Type Structures R Er5Re2C7, Tm5Re2C7, and Lu5Re2C7 with Sc5Re2C7 Type, and Yb2ReC2 with Pr2ReC2 Type Structures R. Pöttgen, K. H. Wachtmann, W. Jeitschko*, A. Lang, T. Ebel Anorganisch-Chemisches Institut, Universität Münster Wilhelm-Klemm-Straße 8 , D-48149 Münster, Germany Z. Naturforsch. 52 b, 231-236 (1997); received November 15, 1996 Crystal Structure, Magnetic Properties, Rare Earth Metal Rhenium Carbides, Polymeric Rhenium-Carbon Polyanions ErsReiCy, TmsRe 2C7, and LusReaC? were prepared by arc-melting of the elemental compo­ nents and subsequent annealing at 800 °C. ErsRe^Cy forms only after the annealing process, whereas the other two carbides were already present in the as cast samples. They crystallize with a ScsReiC? type structure, which was refined from single-crystal X-ray data of LusRe 2C7: Cmmm, a = 791.44(5), b = 1418.08(8), c = 332.79(2) pm, Z = 2, R = 0.037 for 544 structure factors and 21 variable parameters. The structure contains linear centrosymmetric C 3 units with a C-C bond length of 133(2) pm and isolated carbon atoms in octahedral coordination of four lutetium and two rhenium atoms. The rhenium atoms within the two-dimensionally infinite polymeric sheets [ReiC-tln are electronically saturated as is indicated by the diamagnetism and the semiconductivity of this carbide. Yf> 2ReC2 was prepared by reacting the elements in a sealed tantalum tube with a high-frequency furnace. It crystallizes with a Pr 2ReC2 type structure: Pnma, a = 645.91(6), b = 498.64(6), and c = 966.05(6) pm. Magnetic susceptibility measurements indicate the ytterbium atoms to be trivalent in this compound. Introduction The isotypic carbides Ln 2ReC2 (Ln = Ce-Nd, Sm, Gd-Tm, and Lu) have been prepared by arc-melting We recently reported on a new series of rare [11]. Because of the high vapor pressure of ytter­ earth metal rhenium carbides of the composition bium, the corresponding ytterbium compound could Ln^ResCis with Ln = Y, La-Nd, Gd-Er [1]. At­ not be prepared that way. We have now obtained tempts to prepare the isotypic carbides with thulium Yb 2ReC2 by reaction of the elemental components and lutetium did not result in La^ResCis type com­ in a sealed tantalum tube. pounds, instead with these heavy rare earth elements we obtained the carbides TmsRe 2C7 and Lu5Re2C7, Sample Preparation and Lattice Constants which crystallize with a ScsRe 2C7 type structure [ 2] The lanthanoids were purchased in the form of ingots and which are reported here. With erbium we syn­ (all with nominal purities > 99.9 %). They were cut into thesized both the La^ResCis and ScsRe 2C7 type small pieces of about 2 mm diameter, and cold-pressed carbides, the latter only after the annealing at 800 to pellets (6 mm diameter) together with the appropriate °C. These are the first ternary carbides of the heavy amounts of rhenium powder (Starck, 400 mesh, > 99.9 %) rare earth elements containing C 3 units. Such propa- and graphite flakes (Ventron, 20-60 mesh, 99.5 %). dienyl units were found only in few other carbides: The pellets were reacted in an arc-melting furnace un­ Ln3C4 (Ln = Sc, Y, Ho-Lu) [3,4], Mg 2C3 [5], Y4C7 der an atmosphere of argon (99.996 %). The argon was [6], the two different modifications of H 04C7 [6, 7], purified by repeatedly melting a titanium sponge in a sepa­ the carbides Ln4C7 (Ln = Er, Tm, Lu) [7], and the rate copper chill prior to the reactions. The molten buttons of the samples were always turned over and remelted sev­ ternary carbide chloride Ca 3C3Cl2 [8]. The struc­ eral times to enhance their homogeneity. The weight loss tures of Sc 3C4 and Ca3C3Cl2 were supported by after several meltings was always less than 1 %. The pel­ extended Hückel calculations [9]. A preliminary ac­ lets were subsequently wrapped in tantalum foil, sealed count of some of the work reported here has been into evacuated silica tubes, and annealed at 800 °C for given at a conference [ 10]. three weeks. A well-crystallized sample of Lu 5Re2C7 was obtained * Reprint requests to W. Jeitschko. by annealing an arc-melted button with a high-frequency 0939-5075/97/200-0231 $ 06.00 (c) 1997 Verlag der Zeitschrift für Naturforschung. All rights reserved. K Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Advancement of Science under a Creative Commons Attribution Creative Commons Namensnennung 4.0 Lizenz. 4.0 International License. 232 R. Pöttgen et al. • Rare Earth Metal Rhenium Carbides Table I. Lattice constants of the orthorhombic carbides with Sc5Re2C7 type and Pr 2ReC2 type structure. The data for the scandium compound were taken from ref. [2], Standard deviations are given in parentheses throughout the paper. Compound a [pm] b [pm] c [pm] V [nm3] Sc5Re2C7 779.26(7) 1362.0(1) 320.62(3) 0.3403 Er<;Re2C7 792.9(1) 1439.4(2) 338.02(6) 0.3858 Tm5Re2C7 792.02(6) 1430.55(9) 335.94(4) 0.3806 T[K] — LusRe->C7 791.44(5) 1418.08(8) 332.79(2) 0.3735 Fig. 1. Temperature dependence of the inverse magnetic Yb2ReC2 645.91(6) 498.64(6) 966.05(6) 0.3111 susceptibility of Yb2ReC 2 measured with a magnetic flux density of 3 T. furnace in a water-cooled silica tube slightly below the (undetermined) melting point for about six hours. of a ferromagnetic impurity. The susceptibilities For the preparation of Yb 2ReC2 the elements with the have therefore been extrapolated to 1/B = 0. The atomic ratio Yb:Re:C = 3.3:1:2 were sealed into a tan­ X vs. 1/B plots were linear. The thus extrapolated talum tube under argon (800 mbar). They were reacted molar susceptibility was only weakly temperature at high temperature (> 1800 °C) for 5 min in a high- dependent and had a value of -20(±5)-10 -9 m3/mol frequency furnace. Subsequently the upper half of the at room temperature, indicating diamagnetism. tube was pulled out of the induction coil and the excess The magnetic susceptibilities of Yb 2ReC2 were ytterbium was distilled at lower temperature to the cooler also slightly field dependent; however, those mea­ end of the tantalum tube. sured with 3 T were already the same as those ob­ The lattice constants of all compounds (Table I) were served at 5 T and therefore an extrapolation to infi­ obtained by least-squares fits of the Guinier powder nite field-strength was not necessary. The tempera­ data using CuKc*i radiation and a-quartz (a = 491.30, ture dependence obeyed the Curie-Weiss law (Fig. c = 540.46 pm) as an internal standard. To assure proper indexing, the observed patterns were compared with the 1). A magnetic moment of ^exP = 4.5(1) per yt­ calculated ones [ 12] assuming the atomic positions as ob­ terbium atom was obtained from the linear portion tained from the structure refinements of Lu 5Re2C7 and of the \/\ vs. T plot above 70 K. This value is in Er2ReC2 [11], good agreement with the theoretical value /ieff = 4.54 for the free ion value of trivalent ytterbium. Chemical and Physical Properties It is also in agreement with the magnetic proper­ ties of the isotypic carbides Ln 2ReC2 (Ln = Y, Tb, Compact ingots of the carbides are light gray; Dy, Ho, Er, and Lu) where the rhenium atoms do powder samples have dark gray color. Single crys­ not carry magnetic moments [13,14]. The magnetic tals of Lu 5Re2C7 exhibit metallic luster. Together susceptibilities of Yb 2ReC2 do not give any indica­ with the isotypic carbide Sc 5Re2C 7, they are the tion for magnetic order down to 2 K. The negative only carbides containing C 3 units that are stable Weiss constant of G = -22(1) K suggests antiferro­ in air. All other C 3 containing carbides [3 - 8] hy­ magnetic order below 2 K. drolyze readily in the presence of moisture. The The electrical resistivities of small ( ca. 0.3 mm di­ stability of the Sc 5Re2C7 type carbides may be at­ ameter) polycrystalline samples of Lu 5Re2C7, iso­ tributed to the transition metal content of these com­ lated from an arc-melted, annealed, crushed button, pounds. The ingots of Yb 2ReC2 decompose com­ were determined with a four-probe technique [15] pletely in moist air within a few days. between 300 and 5 K. Four copper filaments were Magnetic susceptibilities of Lu 5Re2C7 and glued to the sample using a silver epoxy cement. Yb 2ReC2 were determined with a SQUID magne­ The specific resistivities increased with decreasing tometer (MPMS, Quantum Design) between 2 and temperature for all samples as is typical for semi­ 300 K with magnetic flux densities between 1 and conductors. Activation energies calculated from the 5 T. The susceptibilities of Lu 5Re2C7 were small, steepest portions of the In p vs. 1/T plots (an exam­ slightly temperature and field dependent over the ple is shown in Fig. 2) varied between 0.006 and whole temperature range, indicating a small amount 0.03 eV. These values are very small and therefore R. Pöttgen et al. ■ Rare Earth Metal Rhenium Carbides 233 -— T[K] Table II. Crystal data for LugRe 2C7. 100 50 25 10 Formula mass 1331.33 Space group Cmmm (No. 65) Unit cell dimensions see Table I Formula units per cell Z= 2 Calculated density 11.84 g/cm3 Crystal size 25 x 25 x 50 pm3 Absorption correction from ^-scan data Transmission ratio 1.74 (max:min) 0/26 scans up to 26 = 75° Range in hkl ±16, ±29, ±6 Total no.
Recommended publications
  • Li (Lisabeth) Klemm, Geb. Hermann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Forscherin Neben Ihrem Mann Wilhelm Klemm (1896 - 1985)
    http://www.uni-kiel.de/anorg/lagaly/group/klausSchiver/klemm.pdf Please take notice of: (c)Beneke. Don't quote without permission. Li (Lisabeth) Klemm, geb. Hermann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Forscherin neben ihrem Mann Wilhelm Klemm (1896 - 1985) Klaus Beneke Institut für Anorganische Chemie der Christian-Albrechts-Universität der Universität D-24098 Kiel [email protected] (Juli 2005) 2 Li (Lisabeth) Klemm, geb. Herrmann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Lisabeth (Li) Hermann wurde in Eberswalde geboren und verbrachte ihre Jugend in Danzig und Breslau. Ihr Vater war der bekannte Forstwissenschaftler Geheimrat Herrmann. Ab 1917 studierte Li Herrmann in Danzig und später in Breslau Chemie und promovierte dort 1921 mit magna cum laude bei Heinrich Biltz1 mit einer Doktorarbeit der die Zusammenhänge zwischen Methylierung der Harnsäure und den Dissoziationskonstanten dieser Methyl-Derivate betraf. Danach arbeitete Li Herrmann als Assistentin an der Landwirtschaftlichen Hochschule in Breslau bei Friedrich Wilhelm Berkner2. Dort richtete sie in dem Institut für Pflanzenbau ein neues chemisches Laboratorium ein. 1 Heinrich Biltz (26.05.1865 Berlin - 29.10.1943 Breslau). Heinrich Biltz begann 1885 mit dem Studium der Chemie an der Universität Berlin und ging im 2. Semester an die Universität Göttingen wo er unter Victor Meyer 1888 promovierte. Er wurde Assistent unter Victor Meyer in Heidelberg8, wechselte aber im folgenden Jahr in gleicher Funktion an die Universität Greifswald, wo er sich 1891 habilitierte. Er wurde 1897 als außerordentlicher Professor und Leiter der anorganischen Abteilung an die Universität Kiel berufen. Im Jahre 1911 wurde Heinrich Biltz als Ordinarius und Institutsleiter an die Universität nach Breslau berufen, wo er 1933 emeritiert wurde.
    [Show full text]
  • August 29 - September 03, 2021
    August 29 - September 03, 2021 www.irmmw-thz2021.org 1 PROGRAM PROGRAM MENU FUTURE AND PAST CONFERENCES························ 1 ORGANIZERS·················································· 2 COMMITTEES················································· 3 PLENARY SESSION LIST······································ 8 PRIZES & AWARDS··········································· 10 SCIENTIFIC PROGRAM·······································16 MONDAY···················································16 TUESDAY··················································· 50 WEDNESDAY·············································· 85 THURSDAY··············································· 123 FRIDAY···················································· 167 INFORMATION.. FOR PRESENTERS ORAL PRESENTERS PLENARY TALK 45 min. (40 min. presentation + 5 min. discussion) KEYNOTES COMMUNICATION 30 min. (25 min. presentation + 5 min.discussion) ORAL COMMUNICATION 15 min. (12 min. presentation + 3 min.discussion) Presenters should be present at ZOOM Meeting room 10 minutes before the start of the session and inform the Session Chair of their arrival through the chat window. Presenters test the internet, voice and video in advance. We strongly recommend the External Microphone for a better experience. Presenters will be presenting their work through “Screen share” of their slides. POSTER PRESENTERS Presenters MUST improve the poster display content through exclusive editing links (Including the Cover, PDF file, introduction.) Please do respond in prompt when questions
    [Show full text]
  • Structure and Dynamics of Disordered Ionic Materials PROGRAMME SFB 458 SPP 1136
    SFB 458 SPP 1136 Structure and Dynamics of Disordered Ionic Materials 84th International Bunsen Discussion Meeting PROGRAMME 6-8 October, 2004 Münster / Germany Organisation: SFB 458 (Chair: Prof. Dr. K. Funke) and SPP 1136 (Chair: Prof. Dr. J. Janek) Some Conference pictures SCIENTIFIC PROGRAMME WEDNESDAY, 6 OCTOBER, 2004 8:40 a.m. OPENING REMARKS 11:00 a.m. SESSION II 3:00 p.m. M. Martin K. Funke STRUCTURE AND IONIC MOTION IN RWTH Aachen / Aachen, Germany Chair SFB 458, University of Münster / INORGANIC CRYSTALLINE PHASES Oxynitrides of gallium Münster, Germany Chair: C. Cramer 3:30 p.m. A. Weidenkaff J. Janek SFB 458, University of Münster / Münster, EMPA Zürich / Zürich, Chair SPP 1136, University of Gießen / Germany Switzerland Gießen, Germany Synthesis, structure and physical 11:00 a.m. W. Depmeier properties of perovskite oxynitrides 9:00 a.m. SESSION I University of Kiel / Kiel, Germany SYNTHESIS AND CHARACTERISATION Substitutional effects in the three 4:00 p.m. M. Wuttig OF NEW INORGANIC CRYSTALLINE partial structures of sodalites RWTH Aachen / Aachen, Germany PHASES Insertion of nitrogen into oxynitrides Chair: 11:30 a.m. P. Heitjans B. Krebs University of Hannover / Hannover, 4:30 p.m. COFFEE BREAK SFB 458, University of Münster / Münster, Germany Germany Atomic motion in intercalation com- 5:00 p.m. SESSION IV pounds STRUCTURE AND DIFFUSION IN 9:00 a.m. R. Pöttgen OXYNITRIDES SFB 458, University of Münster / Münster, 12:00 noon D. Wilmer Chair: Germany SFB 458, University of Münster / Münster, R. Dieckmann Lithium transition-metal stannides Germany Cornell University / Ithaca, NY, USA Picosecond dynamics in crystalline ion 9:30 a.m.
    [Show full text]
  • TUM Anorganische Und Analytische Chemie
    Biographical Data Professor Dr. Dr. h. c. Hubert Schmidbaur Emeritus Department Chemie Technische Universität München Lichtenbergstrasse 4 D-85747 Garching, Germany Professor Hubert Schmidbaur, Dr. rer. nat., Dr. h. c., Emeritus Department Chemie, Chair of Inorganic and Analytical Chemistry Head, Inorganic Chemistry Institute Technical University of Munich Born December 31st, 1934, in Landsberg, Bavaria German citizen Professional Data University of Munich 1953-1960: Chemistry, Dr. rer. nat. 1960, University of Marburg 1960-1965: Assistent Professor, Lecturer, Habilitation, University of Würzburg 1965-1973: Professor of Inorganic Chemistry, Technical University of Munich 1973-present: Professor of Inorganic and Analytical Chemistry, Chair and Co-chair, Inorganic Chemistry Institute, 1973-2003 Dean of Sciences 1977-1979, Member of the Academic Senate 1977-1979, Member of the University Budget Committee 1991-1998, Emeritus, 2003. Visiting Professor at University of Edinburgh, UK 1970, at University of Kyoto, Japan, 1978 (JSPS, 1978), at University of Melbourne, Australia, 1986, at Texas A&M University, USA, 1989, at University of Hiroshima, Japan (JSPS, 1993), at University of Western Ontario, Canada, 1993, at University of Auckland, New Zealand, 1994, Visiting Fellow at The Australian National University, Canberra, 2004, Associate Professor at The University of Stellenbosch, South Africa, 2003-2006. Visiting Professor at National University of Singapore, 2008, Adjunct Professor, Chemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia, 2012-2014. Awards and Honours Chemistry Prize, Verband der Chemischen Industrie, 1965, F. S. Kipping Award, Americal Chemical Society, 1974, Alfred Stock Medal, German Chemical Society, 1982, G. W. Leibniz Award, German Science Foundation, 1986, Dwyer Memorial Medal, Univ. New South Wales, Sydney, 1986, J.
    [Show full text]
  • Zur Geschichte Des Faches Chemie
    1 Kurze Übersicht über die Entwicklung des Fachs Chemie an der Universität Marburg von 1609 bis zur Gegenwart Neunte, verbesserte und ergänzte Auflage Fachbereich Chemie der Philipps-Universität Marburg, Februar 2020 2 Herausgegeben vom Dekanat des Fachbereichs Chemie der Philipps−Universität Hans−Meerwein−Straße 4, 35032 Marburg, Telefon 06421/28-25543 Web-Adresse: https://www.uni-marburg.de/de/fb15/fachbereich/dekanat Verantwortlich für den Inhalt: Prof. i. R. Dr. Christian Reichardt (unter Mitarbeit von Dorothea Schulz und Michael Marsch). Der Herausgeber dankt für die zahlreichen wertvollen Hinweise zur Verbesserung und Ergänzung dieser Übersicht. Besonderen Dank an Dr. Carsten Lind vom Universitätsarchiv Marburg, an Prof. Dr. Christoph Meinel, Universität Regensburg und an Dr. Norbert Nail, Universität Marburg. Es gilt die jeweils letzte Auflage! Hinweis 1 Eine aktualisierte Fassung dieser Übersicht kann unter der Web-Adresse https://www.uni-marburg.de/de/fb15/fachbereich/dekanat/chemie.pdf eingesehen und heruntergeladen werden. Hinweis 2 Diese Übersicht wurde vor allem unter Benutzung folgender Quellen zusammengestellt: (a) Christoph Meinel: Die Chemie an der Universität Marburg seit Beginn des 19. Jahrhunderts – Ein Beitrag zu ihrer Entwicklung als Hochschulfach. Band 3 der Schriftenreihe Academia Marburgensis, herausgegeben von der Philipps- Universität; Verlag N. G. Elwert, Marburg, 1978. (b) Rudolf Schmitz: Die Naturwissenschaften an der Philipps-Universität Marburg 1527–1977. Verlag N. G. Elwert, Marburg, 1978. (c) Franz Gundlach, Inge Auerbach (Bearbeiter): Catalogus professorum Academiae Marbur- gensis. Bd. 1 (1527-1910), Bd. 2 (1911-1971), Bd. 3/ Teil I und II (1971-1991). Verlag N. G. Elwert, Marburg, 1927, 1979 und 2000/2001. – Siehe auch Marburger Professorenkatalog online (https://www.uni-marburg.de/uniarchiv/pkat).
    [Show full text]
  • Biographies Found in the Journal of Chemical Education (Compiled from the JCE Database Search Engine Using Keyword “Biography”) ©Dr
    1 Biographies found in the Journal of Chemical Education (compiled from the JCE database search engine using keyword “biography”) ©Dr. John Andraos, June 2003 1. The Curie-Becquerel story. Walton, Harold F. 1992, 69, 11 2. Personal recollections of Frank C. Whitmore. Hurd, Charles D. 1992, 69, 439 3. Personal recollections of Frank C. Whitmore by Charles D. Hurd. Traynham, James G., editor. 1992, 69, 439 4. Isidor Fankuchen alias Isadore van Kueken (LTE). Bryan, R. F. 1992, 69, 775 5. Isidor Fankuchen and crystallography (LTE). Rudman, Reuben. 1992, 69, 775 6. Carl S. Marvel at Illinois Wesleyan, 1911-1915. Tarbell, D. Stanley; Tarbell, Ann T. 1991, 68, 539 7. The brief career of a prolific, pioneering physical organic chemist, Elliot Ritchie Alexander, Jr. (LTE). Pinkus, A. G. 1991, 68, 711 8. Isaac Newton, the alchemist. Davies, Mansel. 1991, 68, 726 9. Carl Auer von Welsbach and the development of incandescent gas lighting. Stock, John T. 1991, 68, 801 10. Hofmann's Benzene tree at the Kekule festivities. Brock, William H.; Benfey, O. Theodor; Stark, Susanne. 1991, 68, 887 11. William Francis Giauque: An adventure in low-temperature research. Stranges, Anthony N. 1990, 67, 187 12. Nobel laureates in chemistry: A philatelic survey: Part I. 1901-1910 (STAMP). Kauffman, George B. 1990, 67, 451 13. The Liebig/Wohler satire on fermentation. de Mayo, Paul; Stoessi, Albert; Usselman, Melvyn C. 1990, 67, 552 14. Nobel laureates in chemistry: A philatelic survey: Part II. 1911-1934 (STAMP). Kauffman, George B. 1990, 67, 569 15. Elliot Quincy Adams (1888-1971): From dipolar ions to fluorescent lights.
    [Show full text]
  • Curriculum Vitae Professor Dr. Wolfgang A. Herrmann
    Curriculum Vitae Professor Dr. Wolfgang A. Herrmann Name: Wolfgang A. Herrmann Born: 18 April 1948 Main areas of research: Inorganic and organometallic Chemistry, C–C-coupling reactions, N- heterocyclic carbene (NHC) Wolfgang A. Herrmann is distinguished for his numerous, important scientific contributions in the field of organometallic chemistry, particularly with regard to homogenous catalysis. With the exploration of methyltrioxorhenium(VII) (MTO) with respect to its reactivity and the associated development of an effective catalyst for industrial application he set the basis for the development of a new class of organometallic complexes involving transition metals in high oxidation states. Academic and Professional Career 1995 - 2019 President of the Technische Universität Munich, Germany 1985 Chair Professor at the Technische Universität Munich in succession of Prof. Dr. h.c.mult. E.O. Fischer, Germany 1979 Professor at the University of Regensburg, Institute of Inorganic Chemistry, Germany 1982 Chair Professor of Inorganic Chemistry at the University of Frankfurt / Main, Germany 1978 Habilitation on "Organometallic Syntheses with Diazoalkanes" at the University of Regensburg, Germany 1973 Doctoral dissertation (Dr. rer.nat.) at the University of Regensburg supervised by Professor Henri Brunner on "Optically Active Transition Metal Complexes with Square-Pyramidal Geometry" ("excellent"), Germany 1967 - 1971 Study of chemistry at the Technische Hochschule Munich, Fellow of the scholarship body of the German Catholic Episcopate (Cusanuswerk),
    [Show full text]
  • List of Contributors
    List of Contributors Dipl.-Phys. Roger Biel Prof. Franz Faupel CIBA Vision GmbH Universit¨at Kiel Postfach 74 Lehrstuhl f¨ur Materialverbunde 63702 Aschaffenburg Kaiserstr. 2 Germany 24143 Kiel Prof. Armin Bunde Germany Justus-Liebig-Universit¨at Gießen [email protected] Institut f¨ur Theoretische Physik III Heinrich-Buff-Ring 16 Dr.-Ing. Andreas P. Fr¨oba 35392 Gießen Universit¨at Erlangen Germany Lehrstuhl f¨ur Techn. Thermody- [email protected] namik Dr. Cornelia Cramer Am Weichselgarten 8 Westf¨alische Wilhelms-Universit¨at 91058 Erlangen M¨unster Germany Institut f¨ur Physikalische Chemie [email protected] Corrensstraße 30/36 48149 M¨unster Prof. Klaus Funke Germany Westf¨alische Wilhelms-Universit¨at [email protected] M¨unster Prof. Jan K. G. Dhont Institut f¨ur Physikalische Chemie Forschungszentrum J¨ulich GmbH Corrensstraße 30/36 Institut f¨ur Festk¨orperforschung 48149 M¨unster 52425 J¨ulich Germany Germany [email protected] [email protected] Prof. Wolfgang Dieterich Prof. Ulrich G¨osele Universit¨at Konstanz Max-Planck-Institut f¨ur Mikrostruk- Fachbereich Physik turphysik 78457 Konstanz Weinberg 2 Germany 06120 Halle wolfgang.dieterich Germany @uni-konstanz.de [email protected] 950 List of Contributors Prof. Wolfgang Grill Dr. Myron Hupalo Universit¨at Leipzig Iowa State University Institut f¨ur Experimentelle Physik II Dept. of Physics and Astronomy Linn´estr. 5 Ames, Iowa 50011 04103 Leipzig U.S.A. Germany [email protected] [email protected] Dr. Sylvio Indris Universit¨at Hannover Prof. Reinhold Haberlandt Institut f¨ur Physikalische Chemie Universit¨at Leipzig und Elektrochemie Institut f¨ur Theoretische Physik Callinstr.
    [Show full text]
  • History of Science in Gdańsk
    TASK QUARTERLY vol. 25, No 1, 2021, pp. 7–120 HISTORY OF SCIENCE IN GDAŃSK ANDRZEJ JANUSZAJTIS Faculty of Applied Physics and Mathematics, Gdansk University of Technology Gabriela Narutowicza 11/12, 80–233 Gdansk, Poland (received: 1 December 2020; published online: 1 January 2021) Abstract: This is the first part of the book entitled History of Science and Technology in Gdańsk, edited in 2014 for the 110th anniversary of the Gdańsk University of Technology (Politechnika Gdańska). It begins with a concise history of the local education with empha- sis laid on schooling in the field of technology. It is followed by the history of the University of Technology founded in 1904 as German Hochschule but always having many Polish students. In 1945 it was transformed into a Polish university. The next sections are devoted to the pro- minent scientists of the old Gdańsk and their worldwide important achievements, not always sufficiently popularized. Many of them were members of foreign academies and scientific socie- ties including the Royal Society of London. Then, the scientific societies of the past Gdańsk are presented, including but not limited to the Experimental Physics Society (later Naturfor- schende Gesellschaft), one of the first such institutions in the world. Last but not least, scientists of the beginning of the 20th century are presented as well as the pioneers of science in Gdańsk after World War II, who had to rebuild the destroyed infrastructure and create the scientific life in Gdańsk from scratch. Keywords: history of science, history of Gdańsk DOI: https://doi.org/10.17466/tq2021/25.1/a 1.
    [Show full text]