<<

Camille Bélanger-ChampagneLuis Anchordoqui LehmanMcGill College University City University of New York

ThermodynamicsCharged Particle and CorrelationsStatistical Mechanics in Minimum Bias Events at ATLAS

• Boltzmann● Physics motivation distribution Fermi-Dirac distribution • ● Minbias event and track selection II Bose-Einstein distribution th • OctoberFebruary 2014 26 2012,• Boltzmann-Maxwell● Azimuthal correlation distribution results WNPPC 2012 • Statistical● Forward-Backward thermodynamics correlation of theresults ideal gas

Thursday, October 30, 14 1 BOLTZMANN STATISTICS Overview Equilibrium configuration for system of N distinguishable noninteracting particles n n (40) subject to constraints ☛ Nj = N and Nj"j = U j=1 j=1 X X

# of ways of selecting N 1 particles from total of N to be place in j =1 level N N! = N1 N !(N N )! ✓ ◆ 1 1 # of ways these N 1 particles can be arranged if there are g 1 quantum states N1 for each particle there are g 1 choices ☛ ( g 1 ) possibilities in all

# of ways to put N 1 particles into a level containing g 1 distinct options

N N!gN1 = 1 N1 N !(N N )! ✓ ◆ 1 1 C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 2 BOLTZMANN STATISTICS II

For j =2 ☛ same situationOverview except that there are only ( N N ) particles remaining to deal with 1 (N N )!gN2 1 2 N !(N N N )! 2 1 2 Continuing process ↴ N!gN1 (N N )!gN2 ! (N ,N ,N )= 1 1 2 B 1 2 n N !(N N )! ⇥ N !(N N N )! 1 1 2 1 2 (N N N )!gN3 1 2 3 ⇥ N !(N N N N )! ··· 3 1 2 3 n Nj gN1 gN2 gN3 g = N! 1 2 3 ··· = N! j N !N !N ! N ! 1 2 3 j=1 j ··· Y We now have to maximize ! B subject to constraints (40)

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 3 LAGRANGE MULTIPLIERS Maximization of f ( x, yOverview ) subject to constraint (x, y) = constant @f @f df = dx + dy =0 @x @y @f @f If dx and dy were independent ☛ = =0 @x @y @ @ However ☛ subject to constraint equation d = dx + dy =0 @x @y ☟ @f/@x @f/@y = @/@x @/@y For constant ratio ↵ @f @ @f @ + ↵ =0 and + ↵ =0 @x @x @y @y expressions we would get if we attempt to maximize f + ↵ without constraint For n variables and two constraint relations @f @ @ + ↵ + =0,i=1, 2, 3 n @xi @xi @xi ··· C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 4 BOLTZMANN DISTRIBUTION

Task ☛ find maximum ofOverview ! B with respect to all N that satisfy constraints (40)

In practice ☛ more convenient to maximize ln ! than w itself n n ln ! =lnN!+ N ln g ln N ! i i i i=1 i=1 X X We are concerned with N 1 ☛ use Stirling’s asymptotic expansion i ln N! N ln N N +lnp2⇡N + (41) ' ··· Neglecting relatively small last term in (41) n n ln ! =lnN!+ N ln g N ln N + N (42) i i i i i i=1 i=1 i X X X Search for maximum of target function using Lagrange multipliers ↴ @ @ @ N ln g N ln N + N + ↵ N + N " =0 @N i i i i i @N i @N i i j " i i i # j i ! j i ! X X X X X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 5 (46) BOLTZMANN DISTRIBUTION II In working out the derivativesOverview ☛ only contribution comes from terms with j = i Nj ln gj ln Nj +1+↵ + "j =0 (43) Nj

For every energy level =0 # of particles per quantum state for equilibrium of the system | {z }

Nj ↵+"j = e = fj("j) (44) gj Constants ↵ and are related to physical properties of the system Multiply (43) by N j and sum over j ↴ N ln g N ln N + ↵ N + N " =0 (45) j j j j j j j j j j j X X ☟ X X N ln g N ln N = ↵N U (46) j j j j j j X X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 6 TEMPERATURE AS A LAGRANGE MULTIPLIER

Substituting (42) ☛ lnOverview! =lnN!+N ↵N U simplifying ☛ ln ! = C U Identification with Boltzmann yields ☛ S = k ln ! = S kU (47) 0 dU PdV @S @S From classical theory ☛ dS = + = dU + dV dT T @U @V ✓ ◆V ✓ ◆U @S 1 giving ☛ = @U V T @S ✓ ◆ From (47) ☛ = k @U ✓ ◆V 1 giving ☛ = (48) kT 2/3 Constancy of V is implied in (40) ☛ because ✏j V /

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 7 PARTITION FUNCTION

↵ "j /kT Substituting (48) into (44)Overview ☛ Nj = gje e

↵ "j /kT so ↵ can be easily found from (40) ☛ N = Nj = e gje j j X ☟ X N e↵ = "j /kT j gje P "j /kT Nj Ne Boltzmann distribution becomes ☛ fj = = "j /kT gj j gje partition function (German Zustandssumme) ↴ P n ✏ /kT Z g e j ⌘ j j=1 X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 8 ENERGY LEVELS CROWDED TOGETHER VERY CLOSELY degeneracy g j replaced Overviewby ⇢ ( " ) d " ☛ # of states in energy range ("," + d") correspondingly Nj replaced by N(")d" ☛ # of particles in range ("," + d")

"/kT N(") Ne f(") = "/kT ⌘ ⇢(") ⇢(")e d" Continuous distribution function is analogousR to discrete case

" /kT Z = ⇢(") e j d" Z Occupation numbers are fully determined by temperature and volume

Set of occupation numbers that maximize ! specify equilibrium macrostate Conclusion: Two states variables define a thermodynamic state exactly as in classical theory!

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 9 Ɠ K .A:LS K .H:MMC;:HS:J=S4Q:KNQIS5ONCMP

 ª ‚Ɠŵ>ŶDŷİ>ŸŹ\ƒ ƓźŻżžcŽ^ d „ſcƓ¬­ ı† IJµ?M¶h·¸ij¹º»Ĵ.¼½¾€i ĵ56ĶķĸĹ¿^ ĺÀĻÁ ļ  ěĪĽÃ8Ä8Å  ÆľÇĿ" Ĭ ' ÈĜĢģ ĭOī kjƐĥįŀ OŁlɲPmÊłÌŃ ńÍŅĝ‡Ğ9 /Î Ň"ˆ'/9;Ġň‰ÐʼnŊÑŌ~ĘÒ  Ó@#nÔ  M)$:×ōØ®A Ú& 'Ù 0ÛŎQ*¯NA Ü0 Ý °Ɠ1ÞoLX ) ß p$à áâ ã?$ä%E1 ĮåŐ. æ&$qç2èr ső#éĦħtSê =2TuQ/*ġBëìC# 9 Š Œ 6íîï-ĨðU Sñ1òóUV õ%ôöƒWWX÷ VøùœŔ _-Ŗú3ŗ2Bûv3*w0 üCýxþĀ āĂ4㥹ĆĩćĈ ĉ4ĊƓ ]Ɠ +, eƓ - . & 7  N"    Ë( Ƒ 3ņ Ï _  ŋ ÕÖ    #    "  RƃŢ,{¦g‘f ĤaƓ’ƓƄƅƆƇƈţƓ“ ”Ťa ƉƓ•Ɗ–ť:Ŧ´ —ŧHŨH( ;'˜Ɠ ũƓ ™5 : šƋ Ɠ Ɠ ›|«Ɠ IƓ7œŪƌ 8ƓƓ JƓžƍƓ ūŸ<Ɠ ƓeŬƓIƓƓ KŭŮ<ůŰ }  J   ű ] \ Ɠ Ɠ Ɠ Ɠ  ¡= Ǝ Ɠd ¢! Ə  + £ƓŲų Ŵ    Ɠ   bbƓ  ¤ ¥Ɠ Ɠ

 K 'K $%K &'$)(#"K

nˆ }6ˆ F-|6ˆ 3Jn0yon63ˆˆ cWsƒ^-``ˆ ns-sJpsJ0nˆ 0-`ˆ /6ˆ -ddYJ63ˆ }F6aˆ tF6ˆ d-itJ0Y6nˆc=ˆsG6ˆ-nq6^/Wˆ-k6ˆ3NnsNaAyNnF,/W6ˆ n-ˆ/ˆsF6JiˆdcnMsJcanˆMaˆ -ˆ qcXM4ˆ Y-ttK06ˆ $aˆ tHMqˆ n60sMcaˆ }6ˆ -nqy^6ˆ % tH-sˆsG6ˆd-jtM0Y6qˆ-j6ˆ J46atL0-Yˆ -a5ˆ!"#! %-`3ˆ$ SsF-sˆtF6ˆc/6ˆtG6ˆ  #%$ #!%  %)Jqˆ ^6-aqˆ tF-sˆ acˆgy-asy^ˆ ns-s6ˆ 0-aˆ -006dsˆ @k6ˆ uF-aˆ ca6ˆ d-jsJ0W6ˆ t-UJaAˆ ndLaˆ Jascˆ-00cyasˆ 'y0Gˆ d-itJ0Y6nˆ G-|6ˆ G-W= Mat6A7kˆ ndJaˆ -a5ˆ -j6ˆ AJ|6aˆ tI6ˆ A6a6jL0ˆ `-^6ˆ % -^dY6nˆ c=ˆ =6j^Mcanˆ -k6ˆ 8Z60tjcaqˆ dcqMtjcanˆ djcscaqˆ a6y† vjcaqˆ-a4ˆ ^yc`qˆaˆJ^dcjt-asˆ -ddWM0-sJcaˆ c=ˆ 6j^L Lj-0ˆ qt-tMqtL0qˆ LqˆtcˆtH6ˆ /6G-|Jckˆc=ˆ=k66ˆ6W60tic`nˆN`ˆ^6s-Wnˆ-a3ˆn6^N 0ca3y0scjnˆ %a|cVJaAˆca06ˆ-A-JaˆcyiˆdJ0syj9ˆc=ˆ6a6kBˆY6|6WˆqG6Y|6qˆ~SsGˆhy-asy^ˆot-t6ˆ /c6nˆj6nsMaAˆcaˆsF6^ˆ~6ˆ6^dF-nJ„6ˆsF-sˆM`ˆsH6ˆ!6k^L Lj-0ˆ0-q6ˆca6ˆd-jtM0Y6ˆ cjˆacˆd-jtJ0W6ˆc00ydJ6qˆ-ˆAJ|6aˆ ns-s6ˆncˆ tF-sˆ3,S %=ckˆ-YYˆDS"JAyj6ˆ '$ S %aˆ56t6k^JaM`AˆsF6ˆsF6k^c3a-^J0ˆdjc/-/JWJtˆ=cjˆ-ˆAJ|6aˆ^-0icqt-s6ˆ~6ˆ `cw6ˆxG-wˆ wG:ˆCicydˆc=ˆKnw-w6rˆNnˆ3J|JnJ/W6ˆN`wcˆ w}cˆ ny/Aicydnˆ3-Sc=ˆsF6ˆnw-w6nˆ -i6ˆtcˆ0c`s-Jaˆc`6ˆd-ktJ0Z6ˆ-`3ˆ @S  3BSc=ˆsG6ˆqs-s6nˆ^yntˆ/6ˆyac00ydJ65ˆ)6ˆ 0cyatMaAˆdjc/Y6^ˆLqˆdk60Jq6YˆsG6ˆq-^6ˆ-qˆtF,sˆc=ˆ sG6ˆ0cMa scnnJ`Aˆ6d6iJ^6asˆˆ ~F6j6ˆ}6ˆ 3M|M464ˆ Kd-jsM0Y6nˆJascˆ3SG6-3nˆ-`3ˆ 3S  3S s-MWnˆ-a3ˆ c/s-Ma63ˆ

!K

#6k6ˆ

 &#) S

=ciˆ sF6ˆTtFˆ 6`6iAˆ W6|6Zˆ*:ˆ wcs-Wˆ `y_/6iˆ c>ˆ ^J0icqs-s6nˆ0cki6ndca3O`Aˆ scˆ -`ˆ -[[c}-/W6ˆ0c`=JAzk-sJc`ˆFERMI-DIRACNnˆ qJ_eYˆ sG8ˆ eic3y1sˆ STATISTICSc=ˆ sG6ˆ P`3J|J3y-Yˆ =-0tcjqˆ c=ˆ wF6ˆ =clmˆc=ˆ h{-sJcaˆ!'$* SOverview=ckˆ-YWˆsG8ˆW8|6Wnˆ Particles are identical (indistinguishable) and they obey Pauli’s exclusion principle  % ☟  "(%+ S half-integer

(cˆ ^-J^Mƒ6ˆ }6ˆ =c\Wc}ˆ 6€-0sZˆ wG6ˆ q-^6ˆ fic263zi8ˆ -nˆ Q`ˆ sG6ˆ 0-q6ˆ c=ˆ Taking spin into account  ☛ no quantum state can accept more than 1 particle cYs ^-`aˆ nt-sJnsJ0nˆ +6ˆ yq8ˆ sG8ˆ ^6sGc3ˆ☟c?ˆ &-Ai-`D;ˆ ^y]sRdZJ6kn‡ˆ .nny^J`Aˆ 1 particle or 0 particle occupies a given state ☛ Nj gj j

K  8

J  /K        ,7->0IK >S  S FS  7S RS ?S GS S /S 89ES 012S 6ES % S Ɠ     5-G-?K fermions in quantum states with energy "j :b

ln !FD = Overviewln gi! ln Ni! ln(gi Ni)! i i i usingX Stirling’sX X ln ! = [g ln g g N ln↴N + N (g N )ln(g N )+(g N )] FD i i i i i i i i i i i i X = [g ln g N ln N (g N )ln(g N )] i i i i i i i i i X using ☛ Ni = N Ni"i = U i i X ☟ X @ @ @ N ln N + (g N )ln(g N ) + ↵ N + N " =0 @N i i i i i i @N i @N i i j " i i # j i ! j i ! X X X X Note that ↴ @ g ln g =0 Nj (gj Nj) @N i i and ln Nj +ln(gj Nj) ( 1) = ↵ "j j i ! N (g N ) X j j j 1 1 C.Luis B.-Champagne Anchordoqui |{z} | {z } 2 Thursday, October 30, 14 11 FERMI-DIRAC DISTRIBUTION Overview gj Nj 1 ln 1 = ↵ "j = N ) g e ↵ "j +1 ✓ j ◆ j 1 once again ☛ = kT µ provisionally define ☛ ↵ = kT ↴

Nj 1 Fermi-Dirac distribution ☛ fj = = (" µ)/kT gj e j +1

1 continuous energy spectrum ☛ f(")= (" µ)/kT e +1

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 12 f +6 f $..%6)6 4)24&6 32 .2 .6

V]}

 

  c} +28V\2} r2} c2f} 56  !6  r/q/]  [8/f 03f3\PBS'fBVS} V8} e>3} Vf>2\} (<`'T<3}QnLfAWKA3^}*u} cnQQAT<} Vq3_} f?3} c} 0V3cUf} sV`J} 9V`} f?Ac}0Acg`F*nz fAVT }!`VqAcAVT'KKu}s3}(ccV,B'f2}  rBh>}f>3},>3QB,'L}XVf4SfB'M}f0BqB030}*v}!6 (T1}`2c3b3}:V`}K(f3`}f?3}Y?wcA,)K}CTi3`X`3f(fDVS}V9}f>Ec},VSS3,fBVS }$oc}s3}c5f}

 

cV}f>(f}6*3,VP2c}



%2} ,V\\2cXVS0BS=}T/W^@Zf8V]} Z8/f-VKfBK^V^Wf3U2]=x}WO/,ZS^EfBd}

f  

f #f " "# f "#!&# f

Vf} 'ABf 2L3Q2Tf'\x} O'QZ;+A/Wf V*/x} j>3} "'pNB} 3t.LocBVU} X]BU-BXL3} X>fVUc} 'R/f Z8/fEMWZfIMZ')A/f/c+/OZ:MIf$^Wfr6}I//-f WZZBcZB+Wf8V\} ',0'1",#6X'\fB{ ,L2c}'Sx} I^F)/Sf V8} r>B,>} -'S} V,,pXx} '} =Bq7S} [o'TfoP} cf'f3 } #n,>} X'`fB,L3c} >(q3} y3`V} V]} BTf2<2]}BOSE-EINSTEINcXBS}'T0} ']3} ,'LN20} STATISTICS*-*(,6 %/f Wf'ZBcf<,c} 03q3LVX30} 9V]} f>Ac},(c3}K3(0c}fV}f>3}Vc3BScf3BU}0Bcf\F*nfBVS}T'Q30}'9f3\}Bfc}BTq3SfV\c } Statistics for indistinguishable particles VoSfGS=} PA,\Vcf'f3c} >3\3} Bc} cLB=>fLu} QV]2} -VPXLB,'f30} f>'S} Bf} Ec} 8V\} Overviewany number of which can occupy given quantum state 2\aBH`',}cf'fAcfH,c}V]} f>3}If>} 3S3\=u}L3q7N}f@3]3}rBLO} )/f3f[p'TfklR}cf'f3c} zero ,VSf'HTCT<}or integer(} spinfVf'L} ☛V;} bosons }A03SfB,'N}X']fA-L3c}rBf>}SV}]3cf\B-fBVS}VU}f>2}SpP+2\}V8} X(`mA,K3c}AS}2(,>} cf'f3 }f}Bc},VUq3SB3Uf}fV}03XB/f}f>2}']\'S=2P3Uf}V8}Z8/f }X']fB| Convenient to depict arrangement of N j particles among g states ,L2c}'RVS=}f>2}3fcf'f3c}+x}  6  6&Z']fBfBVUc}V]}LBT3c}'H.f }j0Vfc}B=p`3}   by ( g 1) partitions or lines and N j dots j /6 0J1U4df              

C1a1Df  f f

in quantum states with energy "j

=67f f NXNLYf>KfP_(L\`GfY\(]2Yfb?]9f2L2V5ef  new microstates obtained by shuffling lines and dots while keeping g j and N j fix ☟ binomial problem of coin-tossing experiment ☛ for j -th level ↴(Nj + gj 1)! Total # of microstates for allowable configuration !j = Nj!(gj 1)! n (N + g ↴1)! ! (N ,N , ,N )= j j BE 1 2 ··· n N !(g 1)! j=1 j j Y C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 13 BOSE-EISNTEIN & LAGRANGE ln ! = ln(N + g 1)! ln N ! ln(g 1)! BE i iOverview i i i i i X X X using Stirling’s ↴ ln ! = [(N + g 1) ln(N + g 1) (N + g 1) N ln N BE i i i i i i i i i X + N (g 1) ln(g 1) + (g 1)] i i i i = [(N + g 1) ln(N + g 1) N ln N (g 1) ln(g 1)] i i i i i i i i i X using ☛ Ni = N Ni"i = U i i X ☟ X @ @ @ (N + g 1) ln(N + g 1) N ln N + ↵ N + N " =0 @N i i i i i i @N i @N i i j " i i # j i ! j i ! X X X X

Note that N + g 1 N ↴ln(N + g 1) + j j ln N j = ↵ " j j N + g 1 j N j j j j 1 1 C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 | {z } |{z} 14 BOSE-EINSTEIN DISTRIBUTION

N + g +1 Overview ln j j = ↵ " N j ✓ j ◆ ☟ N 1 neglecting unity compared to ☛ j = g e ↵ "j 1 i 1 µ Using = and ↵ = kT kT ↴ N 1 Bose-Eisntein distribution ☛ j fj = = (" µ)/kT gi e j 1 1 continuous energy spectrum ☛ f(")= e(" µ)/kT 1

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 15 MAXWELL-BOLTZMANN STATISTICS Dilute gas ☛ for all energy levels occupations numbers are very small Overviewcompared with available number of quantum states Extremely unlikely more than 1 particle will occupy given state whether or not particles obey Pauli exclusion principle becomes irrelevant FD and BE statistics should be approximately identical in dilute gas limit

gj! (gj + Nj 1)! ! = !BE = FD N !(g N )! N !(g 1)! j j j j j j j Y Y For N g j ⌧ j ↴ g ! g (g 1)(g 2) (g N + 1)(g N )! j = j j j ··· j j j j gN (g N )! (g n )! ⇡ j j j j j (g + N 1)! = (g + N 1)(g + N 2) (g + N N )(g 1)! j j j j j j ··· j j j j Nj g (g 1)! N ⇡ j j g j ! ! j FD ⇡ BE ⇡ N ! j j Y C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 16 MAXWELL-BOLTZMANN DISTRIBUTION

Difference between BoltzmannOverview and Maxwell-Boltzmann statistics Boltzmann statistics assumes distinguishable (localizable) particles gNj ! = j ! = N! ! MB N ! ) B MB j j Y Much larger Boltzmann includes permutation ☛ N! of N identifiable particles giving rise to additional microstates Distribution of particles among energy levels ☛ found using Lagrange multipliers

Result can be written down immediately observing that

!B and ! MB differ only by a constant

"j /kT Nj Ne Maxwell-Boltzmann distribution ☛ fj = (49) ⌘ gj Z

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 17 CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS when matter is added orOverview taken from open system change of internal energy is↴ dU = TdS PdV + µdN define Helmholtz function F = U TS ☛ dF = SdT PdV + µdN @F µ = (50) @N TV ✓ ◆ N gj Nj N " /kT ! = , = e j Calculate S and F for MB statistics ☛ MB N ! g Z j j j Y S = k ln ! = k N ln g ln N ! 2 j j j 3 j j X X 4 5 = k N ln g N ln N + N 2 j j j j j3 j j j X X X 4 5 N = k N N ln j 2 j g 3 j j X ✓ ◆ 4 5 C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 18 CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS II Overview 1 S = k N ln N N +lnZ N + N " 2 j j kT j j3 j j j X X X U4 5 = + Nk(ln Z ln N + 1) T

F = U TS = NkT(ln Z ln N + 1) nkT Using (50) ☛ µ = kT(ln Z ln N + 1) + N N = kT ln Z ✓ ◆

N µ/kT Nj 1 = e fj (" µ)/kT Z ) ⌘ gj e j

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 19  l 5 l  "l (YS[:`OdYVlYElg@l+Odf`O

       " " " "  "

,a*8OQK8#SR8EDa/SD&Q8EDOa /EKa 8+,DR8& ?a8D*8OQ8D2S8O5 #?,aG!KQ8&?,Oa& Da#,aK,G_ L,O,DR,*a$[aR5,aO8D3>,a,IS R8EDa

 " a       a FLl A#B ]CQ7l l 

W6-L-a

ll/EKa/*lOR"R8OR8'Oa

   l /EKaaOR R8OR8&Oa l/EKaaOR R8OQ8&Pa

EKa   GLlQ5,a*,DEC8D REKa8DaJS R8EDa a8OaV,N\a? K2.a&ECG K,*aX8R5a SD8Q\a D*aR5,aa*8ORN8#SR8EDa8Oa Da GGKEY8C R8EDaREaR5,a" D*a "*8ORL8$S`

 R8EDOa OaX,a5"V,aO,,D a?EROaE/ajl FlV,KOSOa a>Il !"P6l K,aO5EXDa8Da 2SK,a  a $l XEL+a #ESRa R5,a O83Da E/a 2l 8Oa GGKFGN8 Q,a,a V >S,a E/a Q6,a &6,C8& @a GER,DR8"?a8DaOEC,aO,DO,a8Oa M#8RK"K\ a 5,DaG"KR8(?,Oa K,a#,8D2aQK DO/,KK,*a/KECa  ED,aO\OR,CaREa DER5,La8Ra8Oa8CGEKR DRaQEa,OR $>8O5a a&ECCEDa],KE ,D,L2[aL,/ ,K,D&,a GE8DRa /LECaX58&5a ?>a GER,DR8 ?a ,D,K3;,Oa L,a C, OSL,*a,aGLE%A,Ca 9Oa ,Z &R?[a D >E3ETOaQEaCOMPARISON*,/8D8D3a aK,/,L,D&,a?,V,?a OF0ELa THER5,a 4L DISTRIBUTIONSV OO8& Aa C,&6Distribution D8&Oa ELa /ELa functionsa GER,DR8Overview >a forX,>?a identical8Da IS DRSCa indistinguishableC,&6 D8&Oa SOa particles

 >Jl \lR5,aR5,=C"?a,D,K2\aE/a "aH"KR8(B,a8Oa R5,a,D,K2\aC,"OUK,*aK,?"R8V,aREaR5,a ?EX,ORa GE8DRaE/a R5,aGER,DR8 ?a X,>?a/a aG LQ8&?,aX58&5a8RO,?/a5 Oa ^,KEa,D,L2[a8Oa +1 for FD statistics 8DO,LR,*a 8DREaN a O[OQ,Caj R5,a ,DOS8D2a1 8DR,K &R8EDOa X8R5a 8ROa D,:25#EKOa L,a CEORa E1,Da RRL &Q8V,a 8Da W68&5a ) O,a R6,a &5,C8& >a GER,DR8 >a ;Oa D,2 Q8V,a 6,Da = (" µ)/kT ☛ a = 1 for BE statistics gj e j + a 8 < 0 for MB statistics :

3%l %,l

 

.)l

1Hal !l 'XRZ8^MbXTlXDl l l l l l l l  R7,a0l&-l9kU=l 4l ?Kl  =Mce_M;heNXTcl  

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 20 STATISTICAL THERMODYNAMICS OF IDEAL GAS Consider ideal gas in a sufficientlyOverview large container Levels of system are quantized so finely ☛ introduce density of states ⇢ ( " ) Number of particles in quantum states within energy interval d " # of particles in one state f ( " ) times # of states dn " in this energy interval With f ( " ) given by (49)

N " dN = f(")dn = e ⇢(✏)d" " " Z

For finely quantized levels ☛ replace summation by integration

... d"⇢ (")... ) i X Z " Partition function ☛ Z = d" ⇢ (") e Z C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 21 MAXWELL SPEED DISTRIBUTION For quantum particles inOverview a rigid box V 2m 3/2 1 V 2m 3/2 p⇡ mk T 3/2 p " (51) Z = 2 d" "e = 2 2 3/2 = V 2 (2⇡) ~ 0 (2⇡) ~ 2 2⇡~ ⇣ ⌘ Z ⇣ ⌘ ⇣ ⌘ 2 Using " = mv / 2 and d " = mvdv number of particles in speed interval dv ☛ dN v = N(v)dv = Nf(v) dv ☟

2 3/2 3/2 1 " 1 2⇡~ V 2m m " f(v)= e ⇢ (") mv = 2 2 vmve Z V mkBT (2⇡) ~ 2 ⇣ ⌘ ⇣ ⌘ r m 3/2 mv2 = 4⇡v2exp 2⇡kBT 2kBT ⇣ ⌘ ⇣ ⌘ coincides with result from kinetic theory of gases

Plank’s constant ~ ☛ link to disappeared from final result

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 22 EQUATION OF STATE OF IDEAL GAS Internal energy of ideal gas is its kinetic energy U = N"¯ 2 Overview "¯ = mv¯ /2 being average kinetic energy of an atom f From kinetic theory ☛ "¯ = k T 2 B f =3 corresponding to three translational degrees of freedom n n N " N @Z Same result obtained from (51) and U = " N = e i = i i Z Z @ i=1 i=1 X X @ ln Z @ m 3/2 3 @ 3 1 3 U = N = N V ln = N ln = N = NkBT @ @ 2⇡~2 2 @ 2 2 ⇣ ⌘ @F P is defined by thermodynamic formula ☛ P = @V T With help of (51) ⇣ ⌘ @ ln Z @ ln V Nk T P = Nk T = Nk T = B B @V B @V V

that amounts to equation of state of ideal gas PV = NkBT

C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 23