Thermodynamics and Statistical Mechanics

Thermodynamics and Statistical Mechanics

Camille Bélanger-ChampagneLuis Anchordoqui LehmanMcGill College University City University of New York ThermodynamicsCharged Particle and CorrelationsStatistical Mechanics in Minimum Bias Events at ATLAS • Boltzmann● Physics motivation distribution Fermi-Dirac distribution • ● Minbias event and track selection Statistical Mechanics II Bose-Einstein distribution th • OctoberFebruary 2014 26 2012,• Boltzmann-Maxwell● Azimuthal correlation distribution results WNPPC 2012 • Statistical● Forward-Backward thermodynamics correlation of theresults ideal gas Thursday, October 30, 14 1 BOLTZMANN STATISTICS Overview Equilibrium configuration for system of N distinguishable noninteracting particles n n (40) subject to constraints ☛ Nj = N and Nj"j = U j=1 j=1 X X # of ways of selecting N 1 particles from total of N to be place in j =1 level N N! = N1 N !(N N )! ✓ ◆ 1 − 1 # of ways these N 1 particles can be arranged if there are g 1 quantum states N1 for each particle there are g 1 choices ☛ ( g 1 ) possibilities in all # of ways to put N 1 particles into a level containing g 1 distinct options N N!gN1 = 1 N1 N !(N N )! ✓ ◆ 1 − 1 C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 2 BOLTZMANN STATISTICS II For j =2 ☛ same situationOverview except that there are only ( N N ) particles remaining to deal with − 1 (N N )!gN2 − 1 2 N !(N N N )! 2 − 1 − 2 Continuing process ↴ N!gN1 (N N )!gN2 ! (N ,N ,N )= 1 − 1 2 B 1 2 n N !(N N )! ⇥ N !(N N N )! 1 − 1 2 − 1 − 2 (N N N )!gN3 − 1 − 2 3 ⇥ N !(N N N N )! ··· 3 − 1 − 2 − 3 n Nj gN1 gN2 gN3 g = N! 1 2 3 ··· = N! j N !N !N ! N ! 1 2 3 j=1 j ··· Y We now have to maximize ! B subject to constraints (40) C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 3 LAGRANGE MULTIPLIERS Maximization of f ( x, yOverview ) subject to constraint φ(x, y) = constant @f @f df = dx + dy =0 @x @y @f @f If dx and dy were independent ☛ = =0 @x @y @ @ However ☛ subject to constraint equation dφ = dx + dy =0 @x @y ☟ @f/@x @f/@y = @φ/@x @φ/@y For constant ratio ↵ @f @ @f @ + ↵ =0 and + ↵ =0 @x @x @y @y expressions we would get if we attempt to maximize f + ↵ without constraint For n variables and two constraint relations @f @ @ + ↵ + β =0,i=1, 2, 3 n @xi @xi @xi ··· C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 4 BOLTZMANN DISTRIBUTION Task ☛ find maximum ofOverview ! B with respect to all N that satisfy constraints (40) In practice ☛ more convenient to maximize ln ! than w itself n n ln ! =lnN!+ N ln g ln N ! i i − i i=1 i=1 X X We are concerned with N 1 ☛ use Stirling’s asymptotic expansion i ln N! N ln N N +lnp2⇡N + (41) ' − ··· Neglecting relatively small last term in (41) n n ln ! =lnN!+ N ln g N ln N + N (42) i i − i i i i=1 i=1 i X X X Search for maximum of target function using Lagrange multipliers ↴ @ @ @ N ln g N ln N + N + ↵ N + β N " =0 @N i i − i i i @N i @N i i j " i i i # j i ! j i ! X X X X X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 5 (46) BOLTZMANN DISTRIBUTION II In working out the derivativesOverview ☛ only contribution comes from terms with j = i Nj ln gj ln Nj +1+↵ + "j =0 (43) − −Nj For every energy level =0 # of particles per quantum state for equilibrium of the system | {z } Nj ↵+"j = e = fj("j) (44) gj Constants ↵ and β are related to physical properties of the system Multiply (43) by N j and sum over j ↴ N ln g N ln N + ↵ N + β N " =0 (45) j j − j j j j j j j j j X X ☟ X X N ln g N ln N = ↵N βU (46) j j − j j − − j j X X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 6 TEMPERATURE AS A LAGRANGE MULTIPLIER Substituting (42) ☛ lnOverview! =lnN!+N ↵N βU − − simplifying ☛ ln ! = C βU − Identification with Boltzmann entropy yields ☛ S = k ln ! = S kβU (47) 0 − dU PdV @S @S From classical theory ☛ dS = + = dU + dV dT T @U @V ✓ ◆V ✓ ◆U @S 1 giving ☛ = @U V T @S ✓ ◆ From (47) ☛ = kβ @U − ✓ ◆V 1 giving ☛ β = (48) −kT 2/3 Constancy of V is implied in (40) ☛ because ✏j V − / C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 7 PARTITION FUNCTION ↵ "j /kT Substituting (48) into (44)Overview ☛ Nj = gje e− ↵ "j /kT so ↵ can be easily found from (40) ☛ N = Nj = e gje− j j X ☟ X N e↵ = "j /kT j gje− P "j /kT Nj Ne− Boltzmann distribution becomes ☛ fj = = "j /kT gj j gje− partition function (German Zustandssumme) ↴ P n ✏ /kT Z g e− j ⌘ j j=1 X C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 8 ENERGY LEVELS CROWDED TOGETHER VERY CLOSELY degeneracy g j replaced Overviewby ⇢ ( " ) d " ☛ # of states in energy range ("," + d") correspondingly Nj replaced by N(")d" ☛ # of particles in range ("," + d") "/kT N(") Ne− f(") = "/kT ⌘ ⇢(") ⇢(")e− d" Continuous distribution function is analogousR to discrete case " /kT Z = ⇢(") e− j d" Z Occupation numbers are fully determined by temperature and volume Set of occupation numbers that maximize ! specify equilibrium macrostate Conclusion: Two states variables define a thermodynamic state exactly as in classical theory! C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 9 Ɠ K .A:LS K .H:MMC;:HS:J=S4Q:KNQIS5ONCMP<MS ª Ɠŵ>ŶDŷİ>ŸŹ\ ƓźŻżžcŽ^ d ſcƓ¬­ ıIJµ?M¶h·¸ij¹º»Ĵ.¼½¾i ĵ56Ķ^ķĸĹ¿ ĺÀĻÁ ļ ěĪĽÃ8Ä8Å ÆľÇĿ" Ĭ ' ĜÈĢģ ĭOī kjƐĥįŀ OŁlɲPmÊłÌŃ ńÍŅĝĞ9 /Î Ň"'/9Ġň;ÐʼnŊÑŌ~ĘÒ Ó@#nÔ M)$:×ōØ®A Ú& 'Ù 0ÛŎQ*¯NA Ü0 Ý °Ɠ1ÞoLX ) ß p$à áâ ã?$ä%E1 ĮåŐ. æ&$qç2èr ső#éĦħtSê =2TuQ/*ġBëìC# 9 Œ 6íîï-ĨðU Sñ1òóUV õ%ôöƒWWX÷ VøùœŔ _-Ŗú3ŗ2Bûv3*w0 üCýxþĀ āĂ4㥹ĆĩćĈ ĉ4ĊƓ ]Ɠ +, eƓ - . & 7 N" Ë( Ƒ 3ņ Ï _ ŋ ÕÖ # " R<Rŏ PFŕ ÿ4 %% ċYČŘřŚčĎƓ+FƓ(ď Đ đ Zy Ě© Ē ē¨ęğ Ĕ )ĕ±ƓGGƓ 5ś`Ɠƀ`D;ƓƓ!ŜŝE7 ĖZ [=ėT[³z§LƓY&Ş Ɠ Ɠ ƁƂş,ŠšƓ !Ɠ !>ƃŢ,{¦gf ĤaƓƓƄƅƆƇƈţƓ Ťa ƉƓƊť:Ŧ´ ŧHŨH( ;'Ɠ ũƓ 5 : Ƌ Ɠ Ɠ |«Ɠ IƓ7Ūƌ 8ƓƓJƓƍƓ ū<Ɠ ƓeŬƓIƓƓ KŭŮ<ůŰ } J ű ] \ Ɠ Ɠ Ɠ Ɠ ¡= Ǝ Ɠd ¢! Ə + £ƓŲų Ŵ Ɠ bbƓ ¤ ¥Ɠ Ɠ K 'K $%K &'$)(#"K n }6 F-|6 3Jn0yon63 cWs^-`` ns-sJpsJ0n 0-` /6 -ddYJ63 }F6a tF6 d-itJ0Y6nc=sG6-nq6^/W-k63NnsNaAyNnF,/W6 n-/sF6JidcnMsJcanMa - qcXM4 Y-ttK06 $a tHMq n60sMca }6 -nqy^6 % tH-ssG6d-jtM0Y6q-j6 J46atL0-Y -a5!"#! %-`3$ SsF-stF6c/6tG6 #%$ #!% %)Jq ^6-aq tF-s acgy-asy^ ns-s6 0-a -006ds @k6 uF-a ca6 d-jsJ0W6 t-UJaA ndLa Jasc-00cyas 'y0G d-itJ0Y6n G-|6 G-W= Mat6A7k ndJa -a5 -j6 AJ|6a tI6 A6a6jL0 `-^6 % -^dY6n c= =6j^Mcan -k6 8Z60tjcaq dcqMtjcan djcscaq a6y vjcaq-a4 ^yc`qaJ^dcjt-as -ddWM0-sJca c= 6j^L Lj-0 qt-tMqtL0q LqtctH6 /6G-|Jckc==k666W60tic`nN`^6s-Wn-a3n6^N 0ca3y0scjn %a|cVJaAca06-A-JacyidJ0syj9c=6a6kBY6|6WqG6Y|6q~SsGhy-asy^ot-t6 /c6nj6nsMaAcasF6^~66^dF-nJ6sF-sM`sH6!6k^L Lj-00-q6ca6d-jtM0Y6 cjacd-jtJ0W6c00ydJ6q-AJ|6a ns-s6nc tF-s3,S %=ck-YYDS"JAyj6 '$ S %a56t6k^JaM`AsF6sF6k^c3a-^J0djc/-/JWJt=cj-AJ|6a^-0icqt-s6~6 `cw6xG-w wG:Cicydc=Knw-w6rNn3J|JnJ/W6N`wc w}c ny/Aicydn3-Sc=sF6nw-w6n -i6tc0c`s-Jac`6d-ktJ0Z6-`3 @S 3BSc=sG6qs-s6n^ynt/6yac00ydJ65)6 0cyatMaAdjc/Y6^Lqdk60Jq6YsG6q-^6-qtF,sc= sG60cMa scnnJ`A6d6iJ^6as ~F6j6}6 3M|M464 Kd-jsM0Y6nJasc3SG6-3n-`3 3S 3S s-MWn-a3 c/s-Ma63 !K #6k6 &#) S =ci sF6TtF 6`6iA W6|6Z*: wcs-W `y_/6i c> ^J0icqs-s6n0cki6ndca3O`A sc -` -[[c}-/W60c`=JAzk-sJc`FERMI-DIRACNn qJ_eY sG8 eic3y1s STATISTICSc= sG6 P`3J|J3y-Y =-0tcjq c= wF6 =clmc=h{-sJca!'$* SOverview=ck-YWsG8W8|6Wn Particles are identical (indistinguishable) and they obey Pauli’s exclusion principle % ☟ "(%+ S half-integer spin ☛ fermions (c ^-J^M6 }6 =c\Wc} 6-0sZ wG6 q-^6 fic263zi8 -n Q` sG6 0-q6 c= Taking spin into account ☛ no quantum state can accept more than 1 particle cYs ^-`a nt-sJnsJ0n +6 yq8 sG8 ^6sGc3☟c? &-Ai-`D; ^y]sRdZJ6kn .nny^J`A 1 particle or 0 particle occupies a given state ☛ Nj gj j K 8 J /K ,7->0IK >S S FS 7S RS ?S GS S /S 89ES 012S 6ES % S Ɠ 5-G-?K fermions in quantum states with energy "j :b<iE In determining31=+K K .@4;8AK ! for 49Kgiven<F*:EF6KAC*D.BK macrostateH4E2K ☛ group of g j states divisible into subgroups g are to contain 1 particle and ( g N ) must be unoccupied j j − j counting problem same as coin-tossing experiment ☛ for j -th level ↴ gj! Total # of microstates for allowable configuration !j = Nj!(gj Nj)! n ↴ g ! − ! (N ,N , ,N )= j FD 1 2 ··· n N !(g N )! j=1 j j j Y − C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 10 FERMI-DIRAC & LAGRANGE ln !FD = Overviewln gi! ln Ni! ln(gi Ni)! − − − i i i usingX Stirling’sX X ln ! = [g ln g g N ln↴N + N (g N )ln(g N )+(g N )] FD i i − i − i i i − − i i − i i − i i X = [g ln g N ln N (g N )ln(g N )] i i − i i − i − i i − i i X using ☛ Ni = N Ni"i = U i i X ☟ X @ @ @ N ln N + (g N )ln(g N ) + ↵ N + β N " =0 −@N i i i − i i − i @N i @N i i j " i i # j i ! j i ! X X X X Note that ↴ @ g ln g =0 Nj (gj Nj) −@N i i and ln Nj +ln(gj Nj) − ( 1) = ↵ "j j i ! − − N − − (g N ) − − − X j j − j 1 1 − C.Luis B.-Champagne Anchordoqui |{z} | {z } 2 Thursday, October 30, 14 11 FERMI-DIRAC DISTRIBUTION Overview gj Nj 1 ln 1 = ↵ "j = N − − − ) g e ↵ "j +1 ✓ j ◆ j − − 1 once again ☛ β = −kT µ provisionally define ☛ ↵ = kT ↴ Nj 1 Fermi-Dirac distribution ☛ fj = = (" µ)/kT gj e j − +1 1 continuous energy spectrum ☛ f(")= (" µ)/kT e − +1 C.Luis B.-Champagne Anchordoqui 2 Thursday, October 30, 14 12 f +6 f $..%6)6 4)24&6 32.2.6 V]} c} +28V\2} r2} c2f} 56 !6 r/q/] [8/f 03f3\PBS'fBVS} V8} e>3} Vf>2\} (<`'T<3}QnLfAWKA3^}*u} cnQQAT<} Vq3_} f?3} c} 0V3cUf} sV`J} 9V`} f?Ac}0Acg`F*nz fAVT }!`VqAcAVT'KKu}s3}(ccV,B'f2} rBh>}f>3},>3QB,'L}XVf4SfB'M}f0BqB030}*v}!6 (T1}`2c3b3}:V`}K(f3`}f?3}Y?wcA,)K}CTi3`X`3f(fDVS}V9}f>Ec},VSS3,fBVS }$oc}s3}c5f} cV}f>(f}6*3,VP2c} %2} ,V\\2cXVS0BS=}T/W^@Zf8V]} Z8/f-VKfBK^V^Wf3U2]=x}WO/,ZS^EfBd} f f #f ""#f "#!&# f Vf} 'ABf 2L3Q2Tf'\x} O'QZ;+A/Wf V*/x} j>3} "'pNB} 3t.LocBVU} X]BU-BXL3} X>fVUc} 'R/f Z8/fEMWZfIMZ')A/f/c+/OZ:MIf$^Wfr6}I//-f WZZBcZB+Wf8V\} ',0'1",#6X'\fB{ ,L2c}'Sx} I^F)/Sf V8} r>B,>} -'S} V,,pXx} '} =Bq7S} [o'TfoP} cf'f3 } #n,>}

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us