Canonical Ensemble

Total Page:16

File Type:pdf, Size:1020Kb

Canonical Ensemble ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 8. Canonical Ensemble January 26, 2011 Contents Outline • In this chapter, we will establish the equilibrium statistical distribution for systems maintained at a constant temperature T , through thermal contact with a heat bath. • The resulting distribution is also called Boltzmann's distribution. • The canonical distribution also leads to definition of the partition function and an expression for Helmholtz free energy, analogous to Boltzmann's Entropy formula. • We will study energy fluctuation at constant temperature, and witness another fluctuation- dissipation theorem (FDT) and finally establish the equivalence of micro canonical ensemble and canonical ensemble in the thermodynamic limit. (We first met a mani- festation of FDT in diffusion as Einstein's relation.) Reading Assignment: Reif x6.1-6.7, x6.10 1 1 Temperature For an isolated system, with fixed N { number of particles, V { volume, E { total energy, it is most conveniently described by the microcanonical (NVE) ensemble, which is a uniform distribution between two constant energy surfaces. const E ≤ H(fq g; fp g) ≤ E + ∆E ρ (fq g; fp g) = i i (1) mc i i 0 otherwise Statistical mechanics also provides the expression for entropy S(N; V; E) = kB ln Ω. In thermodynamics, S(N; V; E) can be transformed to a more convenient form (by Legendre transform) of Helmholtz free energy A(N; V; T ), which correspond to a system with constant N; V and temperature T . Q: Does the transformation from N; V; E to N; V; T have a meaning in statistical mechanics? A: The ensemble of systems all at constant N; V; T is called the canonical NVT ensemble. Q: What is the probability distribution function for the canonical ensemble? Is it uniform? A: The distribution is not uniform. It is called Boltzmann's distribution, which we will develop below. Q: How do we define temperature in statistical mechanics? A: In thermodynamics, temperature is established through the zeroth law | transitivity of thermal equilibrium. This means that temperature is a property that emerges in the thermodynamic limit, N ! 1, where N is the number of particles. | The existence of temperature is independent of the type of the material (e.g. gas, liquid, or solid). On the other hand, a system with say, N < 10, particles does not have a well defined temperature (in the usual thermodynamic sense), unless it is in thermal contact with another system, i.e., a thermostat, which has a large number of particles and a well- defined temperature. The thermostat is considered to be many many times larger than the system of inter- est, so that the heat exchange with the system has a negligible effect on the energy per particle and temperature of the thermostat. Through thermal contact with the thermostat, the system will eventually settle down to an equilibrium state with temperature equal to that of the thermostat. 2 The only requirement for the thermostat is that it is much larger than the system of interest. | You could imagine the rest of the universe as the thermostat. The only problem there is that the universe is not in thermal equilibrium. For convenience, the ideal gas is usually used as a model for the thermostat (because its analytic expression for S(N; V; E) is known). But this is not necessary. The property of the system of interest will not change if we use a different type of thermostat. 2 Boltzmann's distribution Because the system can exchange heat with the thermostat, its total energy is no longer conserved. Hence, we should no longer expect its energy to be confined as E ≤ H(fqig; fpig) ≤ E + ∆E Instead, any energy is allowed. Q: How can we obtain the equilibrium density distribution ρc(fqig; fpig) for the canonical ensemble? 3 A: The key idea is that, the (system + thermostat) can be considered an isolated system, and can be described by the microcanonical ensemble. Let H be the Hamiltonian of the system and HB be the Hamiltonian of the heat bath. ^ H + HB = E is conserved. Hence the system and heat bath together can be described by the microcanonical ensemble when they have reached thermal equilibrium. const E^ ≤ H(fq g; fp g) + H (fqBg; fpBg) ≤ E^ + ∆E ρ (fq g; fp g; fqBg; fpBg) = i i B i i mc i i i i 0 otherwise (2) B B where fqig; fpig represent the system's degrees of freedom, and fqi g; fpi g represent the heat bath's degrees of freedom. If we only want to know the statistical distribution concerning the system's degrees of freedom, all we need to do is to integrate out the degrees of freedom corresponding to the heat bath. Z 3NB Y B B B B ρc(fqig; fpig) = dqj dpj ρmc(fqig; fpig; fqi g; fpi g) (3) j=1 This is very similar to the study of momentum distribution of one gas molecule in a gas tank of N molecules (see \Microcanonical ensemble" notes). ) ρ(fqig; fpig) is proportional to the number of ways the thermostat molecules can rearrange ^ B B ^ themselves such that E ≤ H(fqig; fpig) + HB(fqi g; fpi g) ≤ E + ∆E. ^ ρc(fqig; fpig) = const · ΩB(E − H(fqig; fpig)) (4) 4 Recall that the entropy SB of the heat bath is a function of its energy EB. ^ SB(EB) = kB ln ΩB(EB) EB = E − H(fqig; fpig) (5) ^ Also notice that E, EB E = H(fqig; fpig). Hence we can do a Taylor expansion of SB around E = 0. ^ @SB SB(EB) ≈ SB(E) − · H(fqig; fpig) (6) @EB The higher order terms are neglected. We recognize that 1 ≡ @SB , where T is the temperature of the thermostat. T must also T @EB be the temperature of the system at thermal equilibrium. Therefore, H(fq g; fp g) S (E ) = const − i i (7) B B T SB(EB) H(fqig; fpig) ΩB(EB) = exp = const · exp − (8) kB kBT H(fqig; fpig) ρc(fqig; fpig) = const · exp − (9) kBT This is the canonical distribution, also called Boltzmann's distribution or Boltzmann's law. 1 H(fqig; fpig) ρc(fqig; fpig) = exp − (10) Z~ kBT The term in the exponential is called Boltzmann's factor. Z~ is a normalization factor Z 3N Y H(fqig; fpig) Z~ ≡ dq dp exp − (11) i i k T i=1 B We can compare this result with the momentum distribution of one gas molecule in the microcanonical ensemble (see \Microcanonical ensemble" notes). 3 Helmholtz free energy Do not say \it's just a normalization factor". We will see that Z~ is actually very important. In the miocrocanonical ensemble, we also have a nomalization constant Ω~ (volume of phase space) 1 1 E ≤ H(fqig; fpig) ≤ E + ∆E ρmc(fqig; fpig) = (12) Ω~ 0 otherwise 5 Ω~ is eventually connected to entropy Ω~ S(N; V; E) = k ln (13) B N!h3N In other words, Ω~ S = k ln Ω; Ω ≡ (14) B N!h3N Q: What's the meaning of the normalization constant Z in the canonical ensemble? Q: What is entropy in the canonical ensemble? A: Use Shannon's entropy formula, X S = −kB pi ln pi i=1 Z 1 H H ~ = −kB dq dp exp − · − − ln Z Γ Z kBT kBT Z 1 ~ = dq dp ρc(q; p) H(q; p) + kB ln Z (15) T Γ R where Γ means integration over the entire phase space. Notice that the first term simply contains the ensemble average of energy. Z E ≡ hHi ≡ dq dp ρc(q; p) H(q; p) (16) Γ E S = + k ln Z;~ k T ln Z~ = TS − E (17) ) T B B Recall in thermodynamics, the Helmholtz free energy is defined as A ≡ E − TS. Therefore, ~ A = −kBT ln Z (18) Adding quantum corrections Z~ A(N; V; T ) = −k T ln (19) B N! h3N Z~! Z ≡ N!h3N is called the partition function. Notice that energy E is the ensemble average of the Hamiltonian. But the free energy A cannot be written as an ensemble average. A is proportional to the log of the normalization constant A = −kB ln Z. (Analogous to Boltzmann's entropy expression for the canonical ensemble S = kB ln Ω.) 6 4 Fluctuation-dissipation theorem on energy In the canonical ensemble, the system acquire a temperature by having a thermal contact with a thermostat (heat bath) with temperature T . Thus the system is no longer isolated any more. Its total energy, i.e., Hamiltonian H(fqig; fpig) is no longer conserved. In other words, we should expect some fluctuation of total energy in the canonical ensemble. On the other hand, fluctuations are not considered in thermodynamics. At constant N; V; T , the appropriate thermodynamics potential is A(N; V; T ), from which we can compute a definite value for energy E = A + TS, with S ≡ − (@A=@T )N;V . Hence, in thermodynamics, we expect the system to simultaneously have a definite tem- perature T and total energy E. In statistical mechanics, if the system have a well defined temperature, its total energy E must fluctuate. Q: How do we reconcile this difference between statistical mechanics and thermodynamics? A: (1) The total energy in thermodynamics should be identified as the ensemble average of the Hamiltonian in statistical mechanics. 3N 1 Z Y 1 E = hHi ≡ dq dp exp(−βH(fq g; fp g)) · H(fq g; fp g); β ≡ (20) ~ i i i i i i k T Z i=1 B (2) We expect the statistical fluctuation of the Hamiltonian to diminish in the thermody- namic limit (N ! 1).
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Spin Statistics, Partition Functions and Network Entropy
    This is a repository copy of Spin Statistics, Partition Functions and Network Entropy. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/118694/ Version: Accepted Version Article: Wang, Jianjia, Wilson, Richard Charles orcid.org/0000-0001-7265-3033 and Hancock, Edwin R orcid.org/0000-0003-4496-2028 (2017) Spin Statistics, Partition Functions and Network Entropy. Journal of Complex Networks. pp. 1-25. ISSN 2051-1329 https://doi.org/10.1093/comnet/cnx017 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ IMA Journal of Complex Networks (2017)Page 1 of 25 doi:10.1093/comnet/xxx000 Spin Statistics, Partition Functions and Network Entropy JIANJIA WANG∗ Department of Computer Science,University of York, York, YO10 5DD, UK ∗[email protected] RICHARD C. WILSON Department of Computer Science,University of York, York, YO10 5DD, UK AND EDWIN R. HANCOCK Department of Computer Science,University of York, York, YO10 5DD, UK [Received on 2 May 2017] This paper explores the thermodynamic characterization of networks using the heat bath analogy when the energy states are occupied under different spin statistics, specified by a partition function.
    [Show full text]
  • Statistical Physics– a Second Course
    Statistical Physics– a second course Finn Ravndal and Eirik Grude Flekkøy Department of Physics University of Oslo September 3, 2008 2 Contents 1 Summary of Thermodynamics 5 1.1 Equationsofstate .......................... 5 1.2 Lawsofthermodynamics. 7 1.3 Maxwell relations and thermodynamic derivatives . .... 9 1.4 Specificheatsandcompressibilities . 10 1.5 Thermodynamicpotentials . 12 1.6 Fluctuations and thermodynamic stability . .. 15 1.7 Phasetransitions ........................... 16 1.8 EntropyandGibbsParadox. 18 2 Non-Interacting Particles 23 1 2.1 Spin- 2 particlesinamagneticfield . 23 2.2 Maxwell-Boltzmannstatistics . 28 2.3 Idealgas................................ 32 2.4 Fermi-Diracstatistics. 35 2.5 Bose-Einsteinstatistics. 36 3 Statistical Ensembles 39 3.1 Ensemblesinphasespace . 39 3.2 Liouville’stheorem . .. .. .. .. .. .. .. .. .. .. 42 3.3 Microcanonicalensembles . 45 3.4 Free particles and multi-dimensional spheres . .... 48 3.5 Canonicalensembles . 50 3.6 Grandcanonicalensembles . 54 3.7 Isobaricensembles .......................... 58 3.8 Informationtheory . .. .. .. .. .. .. .. .. .. .. 62 4 Real Gases and Liquids 67 4.1 Correlationfunctions. 67 4.2 Thevirialtheorem .......................... 73 4.3 Mean field theory for the van der Waals equation . 76 4.4 Osmosis ................................ 80 3 4 CONTENTS 5 Quantum Gases and Liquids 83 5.1 Statisticsofidenticalparticles. .. 83 5.2 Blackbodyradiationandthephotongas . 88 5.3 Phonons and the Debye theory of specific heats . 96 5.4 Bosonsatnon-zerochemicalpotential .
    [Show full text]
  • Entropy: from the Boltzmann Equation to the Maxwell Boltzmann Distribution
    Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution A formula to relate entropy to probability Often it is a lot more useful to think about entropy in terms of the probability with which different states are occupied. Lets see if we can describe entropy as a function of the probability distribution between different states. N! WN particles = n1!n2!....nt! stirling (N e)N N N W = = N particles n1 n2 nt n1 n2 nt (n1 e) (n2 e) ....(nt e) n1 n2 ...nt with N pi = ni 1 W = N particles n1 n2 nt p1 p2 ...pt takeln t lnWN particles = "#ni ln pi i=1 divide N particles t lnW1particle = "# pi ln pi i=1 times k t k lnW1particle = "k# pi ln pi = S1particle i=1 and t t S = "N k p ln p = "R p ln p NA A # i # i i i=1 i=1 ! Think about how this equation behaves for a moment. If any one of the states has a probability of occurring equal to 1, then the ln pi of that state is 0 and the probability of all the other states has to be 0 (the sum over all probabilities has to be 1). So the entropy of such a system is 0. This is exactly what we would have expected. In our coin flipping case there was only one way to be all heads and the W of that configuration was 1. Also, and this is not so obvious, the maximal entropy will result if all states are equally populated (if you want to see a mathematical proof of this check out Ken Dill’s book on page 85).
    [Show full text]
  • Physical Biology
    Physical Biology Kevin Cahill Department of Physics and Astronomy University of New Mexico, Albuquerque, NM 87131 i For Ginette, Mike, Sean, Peter, Mia, James, Dylan, and Christopher Contents Preface page v 1 Atoms and Molecules 1 1.1 Atoms 1 1.2 Bonds between atoms 1 1.3 Oxidation and reduction 5 1.4 Molecules in cells 6 1.5 Sugars 6 1.6 Hydrocarbons, fatty acids, and fats 8 1.7 Nucleotides 10 1.8 Amino acids 15 1.9 Proteins 19 Exercises 20 2 Metabolism 23 2.1 Glycolysis 23 2.2 The citric-acid cycle 23 3 Molecular devices 27 3.1 Transport 27 4 Probability and statistics 28 4.1 Mean and variance 28 4.2 The binomial distribution 29 4.3 Random walks 32 4.4 Diffusion as a random walk 33 4.5 Continuous diffusion 34 4.6 The Poisson distribution 36 4.7 The gaussian distribution 37 4.8 The error function erf 39 4.9 The Maxwell-Boltzmann distribution 40 Contents iii 4.10 Characteristic functions 41 4.11 Central limit theorem 42 Exercises 45 5 Statistical Mechanics 47 5.1 Probability and the Boltzmann distribution 47 5.2 Equilibrium and the Boltzmann distribution 49 5.3 Entropy 53 5.4 Temperature and entropy 54 5.5 The partition function 55 5.6 The Helmholtz free energy 57 5.7 The Gibbs free energy 58 Exercises 59 6 Chemical Reactions 61 7 Liquids 65 7.1 Diffusion 65 7.2 Langevin's Theory of Brownian Motion 67 7.3 The Einstein-Nernst relation 71 7.4 The Poisson-Boltzmann equation 72 7.5 Reynolds number 73 7.6 Fluid mechanics 76 8 Cell structure 77 8.1 Organelles 77 8.2 Membranes 78 8.3 Membrane potentials 80 8.4 Potassium leak channels 82 8.5 The Debye-H¨uckel equation 83 8.6 The Poisson-Boltzmann equation in one dimension 87 8.7 Neurons 87 Exercises 89 9 Polymers 90 9.1 Freely jointed polymers 90 9.2 Entropic force 91 10 Mechanics 93 11 Some Experimental Methods 94 11.1 Time-dependent perturbation theory 94 11.2 FRET 96 11.3 Fluorescence 103 11.4 Some mathematics 107 iv Contents References 109 Index 111 Preface Most books on biophysics hide the physics so as to appeal to a wide audi- ence of students.
    [Show full text]
  • Microcanonical, Canonical, and Grand Canonical Ensembles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 30, 2016)
    The equivalence: microcanonical, canonical, and grand canonical ensembles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 30, 2016) Here we show the equivalence of three ensembles; micro canonical ensemble, canonical ensemble, and grand canonical ensemble. The neglect for the condition of constant energy in canonical ensemble and the neglect of the condition for constant energy and constant particle number can be possible by introducing the density of states multiplied by the weight factors [Boltzmann factor (canonical ensemble) and the Gibbs factor (grand canonical ensemble)]. The introduction of such factors make it much easier for one to calculate the thermodynamic properties. ((Microcanonical ensemble)) In the micro canonical ensemble, the macroscopic system can be specified by using variables N, E, and V. These are convenient variables which are closely related to the classical mechanics. The density of states (N E,, V ) plays a significant role in deriving the thermodynamic properties such as entropy and internal energy. It depends on N, E, and V. Note that there are two constraints. The macroscopic quantity N (the number of particles) should be kept constant. The total energy E should be also kept constant. Because of these constraints, in general it is difficult to evaluate the density of states. ((Canonical ensemble)) In order to avoid such a difficulty, the concept of the canonical ensemble is introduced. The calculation become simpler than that for the micro canonical ensemble since the condition for the constant energy is neglected. In the canonical ensemble, the system is specified by three variables ( N, T, V), instead of N, E, V in the micro canonical ensemble.
    [Show full text]
  • Chapter 6. the Ising Model on a Square Lattice
    Chapter 6. The Ising model on a square lattice 6.1 The basic Ising model The Ising model is a minimal model to capture the spontaneous emergence of macroscopic ferromagnetism from the interaction of individual microscopic magnetic dipole moments. Consider a two-dimensional system of spin 1=2 magnetic dipoles arrayed on a square L L lattice. At each lattice point .i; j /, the dipole can assume only one of two spin states, i;j 1. The dipoles interact with an externally applied constant magnetic field B, and the energyD˙ of a dipole interacting with the external field, Uext, is given by U .i;j / Hi;j ext D where H is a non-dimensionalized version of B. The energy of each spin (dipole) is lower when it is aligned with the external magnetic field. The dipoles also interact with their nearest neighbors. Due to quantum effects the energy of two spins in a ferromagnetic material is lower when they are aligned with each other1. As a model of this, it is assumed in the Ising model that the interaction energy for the dipole at .i; j / is given by Uint.i;j / Ji;j .i 1;j i 1;j i;j 1 i;j 1/ D C C C C C where J is a non-dimensionalized coupling strength. Summing over all sites, we get the total energy for a configuration given by E L L J L L U./ H i;j i;j .i 1;j i 1;j i;j 1 i;j 1/: E D 2 C C C C C i 1 j 1 i 1 j 1 XD XD XD XD The second sum is divided by two to account for each interaction being counted twice.
    [Show full text]
  • LECTURE 9 Statistical Mechanics Basic Methods We Have Talked
    LECTURE 9 Statistical Mechanics Basic Methods We have talked about ensembles being large collections of copies or clones of a system with some features being identical among all the copies. There are three different types of ensembles in statistical mechanics. 1. If the system under consideration is isolated, i.e., not interacting with any other system, then the ensemble is called the microcanonical ensemble. In this case the energy of the system is a constant. 2. If the system under consideration is in thermal equilibrium with a heat reservoir at temperature T , then the ensemble is called a canonical ensemble. In this case the energy of the system is not a constant; the temperature is constant. 3. If the system under consideration is in contact with both a heat reservoir and a particle reservoir, then the ensemble is called a grand canonical ensemble. In this case the energy and particle number of the system are not constant; the temperature and the chemical potential are constant. The chemical potential is the energy required to add a particle to the system. The most common ensemble encountered in doing statistical mechanics is the canonical ensemble. We will explore many examples of the canonical ensemble. The grand canon- ical ensemble is used in dealing with quantum systems. The microcanonical ensemble is not used much because of the difficulty in identifying and evaluating the accessible microstates, but we will explore one simple system (the ideal gas) as an example of the microcanonical ensemble. Microcanonical Ensemble Consider an isolated system described by an energy in the range between E and E + δE, and similar appropriate ranges for external parameters xα.
    [Show full text]
  • Statistical Physics Syllabus Lectures and Recitations
    Graduate Statistical Physics Syllabus Lectures and Recitations Lectures will be held on Tuesdays and Thursdays from 9:30 am until 11:00 am via Zoom: https://nyu.zoom.us/j/99702917703. Recitations will be held on Fridays from 3:30 pm until 4:45 pm via Zoom. Recitations will begin the second week of the course. David Grier's office hours will be held on Mondays from 1:30 pm to 3:00 pm in Physics 873. Ankit Vyas' office hours will be held on Fridays from 1:00 pm to 2:00 pm in Physics 940. Instructors David G. Grier Office: 726 Broadway, room 873 Phone: (212) 998-3713 email: [email protected] Ankit Vyas Office: 726 Broadway, room 965B Email: [email protected] Text Most graduate texts in statistical physics cover the material of this course. Suitable choices include: • Mehran Kardar, Statistical Physics of Particles (Cambridge University Press, 2007) ISBN 978-0-521-87342-0 (hardcover). • Mehran Kardar, Statistical Physics of Fields (Cambridge University Press, 2007) ISBN 978- 0-521-87341-3 (hardcover). • R. K. Pathria and Paul D. Beale, Statistical Mechanics (Elsevier, 2011) ISBN 978-0-12- 382188-1 (paperback). Undergraduate texts also may provide useful background material. Typical choices include • Frederick Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, 2009) ISBN 978-1-57766-612-7. • Charles Kittel and Herbert Kroemer, Thermal Physics (W. H. Freeman, 1980) ISBN 978- 0716710882. • Daniel V. Schroeder, An Introduction to Thermal Physics (Pearson, 1999) ISBN 978- 0201380279. Outline 1. Thermodynamics 2. Probability 3. Kinetic theory of gases 4.
    [Show full text]
  • Lecture 7: Ensembles
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 7: Ensembles 1 Introduction In statistical mechanics, we study the possible microstates of a system. We never know exactly which microstate the system is in. Nor do we care. We are interested only in the behavior of a system based on the possible microstates it could be, that share some macroscopic proporty (like volume V ; energy E, or number of particles N). The possible microstates a system could be in are known as the ensemble of states for a system. There are dierent kinds of ensembles. So far, we have been counting microstates with a xed number of particles N and a xed total energy E. We dened as the total number microstates for a system. That is (E; V ; N) = 1 (1) microstatesk withsaXmeN ;V ;E Then S = kBln is the entropy, and all other thermodynamic quantities follow from S. For an isolated system with N xed and E xed the ensemble is known as the microcanonical 1 @S ensemble. In the microcanonical ensemble, the temperature is a derived quantity, with T = @E . So far, we have only been using the microcanonical ensemble. 1 3 N For example, a gas of identical monatomic particles has (E; V ; N) V NE 2 . From this N! we computed the entropy S = kBln which at large N reduces to the Sackur-Tetrode formula. 1 @S 3 NkB 3 The temperature is T = @E = 2 E so that E = 2 NkBT . Also in the microcanonical ensemble we observed that the number of states for which the energy of one degree of freedom is xed to "i is (E "i) "i/k T (E " ).
    [Show full text]
  • Section 2 Introduction to Statistical Mechanics
    Section 2 Introduction to Statistical Mechanics 2.1 Introducing entropy 2.1.1 Boltzmann’s formula A very important thermodynamic concept is that of entropy S. Entropy is a function of state, like the internal energy. It measures the relative degree of order (as opposed to disorder) of the system when in this state. An understanding of the meaning of entropy thus requires some appreciation of the way systems can be described microscopically. This connection between thermodynamics and statistical mechanics is enshrined in the formula due to Boltzmann and Planck: S = k ln Ω where Ω is the number of microstates accessible to the system (the meaning of that phrase to be explained). We will first try to explain what a microstate is and how we count them. This leads to a statement of the second law of thermodynamics, which as we shall see has to do with maximising the entropy of an isolated system. As a thermodynamic function of state, entropy is easy to understand. Entropy changes of a system are intimately connected with heat flow into it. In an infinitesimal reversible process dQ = TdS; the heat flowing into the system is the product of the increment in entropy and the temperature. Thus while heat is not a function of state entropy is. 2.2 The spin 1/2 paramagnet as a model system Here we introduce the concepts of microstate, distribution, average distribution and the relationship to entropy using a model system. This treatment is intended to complement that of Guenault (chapter 1) which is very clear and which you must read.
    [Show full text]
  • Arxiv:Cond-Mat/0411176V1
    PARTITION FUNCTIONS FOR STATISTICAL MECHANICS WITH MICROPARTITIONS AND PHASE TRANSITIONS AJAY PATWARDHAN Physics department, St Xavier’s college, Mahapalika Marg , Mumbai 400001,India Visitor, Institute of Mathematical Sciences, CIT campus, Tharamani, Chennai, India [email protected] ABSTRACT The fundamentals of Statistical Mechanics require a fresh definition in the context of the developments in Classical Mechanics of integrable and chaotic systems. This is done with the introduction of Micro partitions; a union of disjoint components in phase space. Partition functions including the invariants ,Kolmogorov entropy and Euler number are introduced. The ergodic hypothesis for partial ergodicity is discussed. In the context of Quantum Mechanics the presence of symmetry groups with irreducible representations gives rise to degenerate and non degenerate spectrum for the Hamiltonian. Quantum Statistical Mechanics is formulated including these two cases ; by including the multiplicity dimension of the group representation and the Casimir invariants into the Partition function. The possibility of new kinds of phase transitions is discussed. The occurence of systems with non simply connected configuration spaces and Quantum Mechanics for them , also requires a possible generalisation of Statistical Mechanics. The developments of Quantum pure, mixed and en- tangled states has made it neccessary to understand the Statistical Mechanics of the multipartite N particle system . And to obtain in terms of the den- sity matrices , written in energy basis , the Trace of the Gibbs operator as the Partition function and use it to get statistical averages of operators. There are some issues of definition, interpretation and application that are discussed. INTRODUCTION A Statistical Mechanics of systems with properties of symmetry , chaos, topology and mixtures is required for a variety of physics ; including con- densed matter and high energy physics.
    [Show full text]