Received October 18, 2019, accepted October 30, 2019, date of publication November 4, 2019, date of current version November 13, 2019. Digital Object Identifier 10.1109/ACCESS.2019.2951218 GPU Static Modeling Using PTX and Deep Structured Learning JOÃO GUERREIRO , (Student Member, IEEE), ALEKSANDAR ILIC , (Member, IEEE), NUNO ROMA , (Senior Member, IEEE), AND PEDRO TOMÁS , (Senior Member, IEEE) INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal Corresponding author: João Guerreiro (
[email protected]) This work was supported in part by the national funds through Fundação para a Ciência e a Tecnologia (FCT), under Grant SFRH/BD/101457/2014, and in part by the projects UID/CEC/50021/2019, PTDC/EEI-HAC/30485/2017, and PTDC/CCI-COM/31901/2017. ABSTRACT In the quest for exascale computing, energy-efficiency is a fundamental goal in high- performance computing systems, typically achieved via dynamic voltage and frequency scaling (DVFS). However, this type of mechanism relies on having accurate methods of predicting the performance and power/energy consumption of such systems. Unlike previous works in the literature, this research focuses on creating novel GPU predictive models that do not require run-time information from the applications. The proposed models, implemented using recurrent neural networks, take into account the sequence of GPU assembly instructions (PTX) and can accurately predict changes in the execution time, power and energy consumption of applications when the frequencies of different GPU domains (core and memory) are scaled. Validated with 24 applications on GPUs from different NVIDIA microarchitectures (Turing, Volta, Pascal and Maxwell), the proposed models attain a significant accuracy.