NVIDIA Tensor Core Programmability, Performance & Precision
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
20201130 Gcdv V1.0.Pdf
DE LA RECHERCHE À L’INDUSTRIE Architecture evolutions for HPC 30 Novembre 2020 Guillaume Colin de Verdière Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr Commissariat à l’énergie atomique et aux énergies alternatives EUROfusion G. Colin de Verdière 30/11/2020 EVOLUTION DRIVER: TECHNOLOGICAL CONSTRAINTS . Power wall . Scaling wall . Memory wall . Towards accelerated architectures . SC20 main points Commissariat à l’énergie atomique et aux énergies alternatives EUROfusion G. Colin de Verdière 30/11/2020 2 POWER WALL P: power 푷 = 풄푽ퟐ푭 V: voltage F: frequency . Reduce V o Reuse of embedded technologies . Limit frequencies . More cores . More compute, less logic o SIMD larger o GPU like structure © Karl Rupp https://software.intel.com/en-us/blogs/2009/08/25/why-p-scales-as-cv2f-is-so-obvious-pt-2-2 Commissariat à l’énergie atomique et aux énergies alternatives EUROfusion G. Colin de Verdière 30/11/2020 3 SCALING WALL FinFET . Moore’s law comes to an end o Probable limit around 3 - 5 nm o Need to design new structure for transistors Carbon nanotube . Limit of circuit size o Yield decrease with the increase of surface • Chiplets will dominate © AMD o Data movement will be the most expensive operation • 1 DFMA = 20 pJ, SRAM access= 50 pJ, DRAM access= 1 nJ (source NVIDIA) 1 nJ = 1000 pJ, Φ Si =110 pm Commissariat à l’énergie atomique et aux énergies alternatives EUROfusion G. Colin de Verdière 30/11/2020 4 MEMORY WALL . Better bandwidth with HBM o DDR5 @ 5200 MT/s 8ch = 0.33 TB/s Thread 1 Thread Thread 2 Thread Thread 3 Thread o HBM2 @ 4 stacks = 1.64 TB/s 4 Thread Skylake: SMT2 . -
Science-Driven Development of Supercomputer Fugaku
Special Contribution Science-driven Development of Supercomputer Fugaku Hirofumi Tomita Flagship 2020 Project, Team Leader RIKEN Center for Computational Science In this article, I would like to take a historical look at activities on the application side during supercomputer Fugaku’s climb to the top of supercomputer rankings as seen from a vantage point in early July 2020. I would like to describe, in particular, the change in mindset that took place on the application side along the path toward Fugaku’s top ranking in four benchmarks in 2020 that all began with the Application Working Group and Computer Architecture/Compiler/ System Software Working Group in 2011. Somewhere along this path, the application side joined forces with the architecture/system side based on the keyword “co-design.” During this journey, there were times when our opinions clashed and when efforts to solve problems came to a halt, but there were also times when we took bold steps in a unified manner to surmount difficult obstacles. I will leave the description of specific technical debates to other articles, but here, I would like to describe the flow of Fugaku development from the application side based heavily on a “science-driven” approach along with some of my personal opinions. Actually, we are only halfway along this path. We look forward to the many scientific achievements and so- lutions to social problems that Fugaku is expected to bring about. 1. Introduction In this article, I would like to take a look back at On June 22, 2020, the supercomputer Fugaku the flow along the path toward Fugaku’s top ranking became the first supercomputer in history to simul- as seen from the application side from a vantage point taneously rank No. -
NVIDIA DGX Station the First Personal AI Supercomputer 1.0 Introduction
White Paper NVIDIA DGX Station The First Personal AI Supercomputer 1.0 Introduction.........................................................................................................2 2.0 NVIDIA DGX Station Architecture ........................................................................3 2.1 NVIDIA Tesla V100 ..........................................................................................5 2.2 Second-Generation NVIDIA NVLink™ .............................................................7 2.3 Water-Cooling System for the GPUs ...............................................................7 2.4 GPU and System Memory...............................................................................8 2.5 Other Workstation Components.....................................................................9 3.0 Multi-GPU with NVLink......................................................................................10 3.1 DGX NVLink Network Topology for Efficient Application Scaling..................10 3.2 Scaling Deep Learning Training on NVLink...................................................12 4.0 DGX Station Software Stack for Deep Learning.................................................14 4.1 NVIDIA CUDA Toolkit.....................................................................................16 4.2 NVIDIA Deep Learning SDK ...........................................................................16 4.3 Docker Engine Utility for NVIDIA GPUs.........................................................17 4.4 NVIDIA Container -
The NVIDIA DGX-1 Deep Learning System
NVIDIA DGX-1 ARTIFIcIAL INTELLIGENcE SYSTEM The World’s First AI Supercomputer in a Box Get faster training, larger models, and more accurate results from deep learning with the NVIDIA® DGX-1™. This is the world’s first purpose-built system for deep learning and AI-accelerated analytics, with performance equal to 250 conventional servers. It comes fully integrated with hardware, deep learning software, development tools, and accelerated analytics applications. Immediately shorten SYSTEM SPECIFICATIONS data processing time, visualize more data, accelerate deep learning frameworks, GPUs 8x Tesla P100 and design more sophisticated neural networks. TFLOPS (GPU FP16 / 170/3 CPU FP32) Iterate and Innovate Faster GPU Memory 16 GB per GPU CPU Dual 20-core Intel® Xeon® High-performance training accelerates your productivity giving you faster insight E5-2698 v4 2.2 GHz NVIDIA CUDA® Cores 28672 and time to market. System Memory 512 GB 2133 MHz DDR4 Storage 4x 1.92 TB SSD RAID 0 NVIDIA DGX-1 Delivers 58X Faster Training Network Dual 10 GbE, 4 IB EDR Software Ubuntu Server Linux OS DGX-1 Recommended GPU NVIDIA DX-1 23 Hours, less than 1 day Driver PU-Only Server 1310 Hours (5458 Days) System Weight 134 lbs 0 10X 20X 30X 40X 50X 60X System Dimensions 866 D x 444 W x 131 H (mm) Relatve Performance (Based on Tme to Tran) Packing Dimensions 1180 D x 730 W x 284 H (mm) affe benchmark wth V-D network, tranng 128M mages wth 70 epochs | PU servers uses 2x Xeon E5-2699v4 PUs Maximum Power 3200W Requirements Operating Temperature 10 - 30°C NVIDIA DGX-1 Delivers 34X More Performance Range NVIDIA DX-1 170 TFLOPS PU-Only Server 5 TFLOPS 0 10 50 100 150 170 Performance n teraFLOPS PU s dual socket Intel Xeon E5-2699v4 170TF s half precson or FP16 DGX-1 | DATA SHEET | DEc16 computing for Infinite Opportunities NVIDIA DGX-1 Software Stack The NVIDIA DGX-1 is the first system built with DEEP LEARNING FRAMEWORKS NVIDIA Pascal™-powered Tesla® P100 accelerators. -
Computing for the Most Demanding Users
COMPUTING FOR THE MOST DEMANDING USERS NVIDIA Artificial intelligence, the dream of computer scientists for over half a century, is no longer science fiction. And in the next few years, it will transform every industry. Soon, self-driving cars will reduce congestion and improve road safety. AI travel agents will know your preferences and arrange every detail of your family vacation. And medical instruments will read and understand patient DNA to detect and treat early signs of cancer. Where engines made us stronger and powered the first industrial revolution, AI will make us smarter and power the next. What will make this intelligent industrial revolution possible? A new computing model — GPU deep learning — that enables computers to learn from data and write software that is too complex for people to code. NVIDIA — INVENTOR OF THE GPU The GPU has proven to be unbelievably effective at solving some of the most complex problems in computer science. It started out as an engine for simulating human imagination, conjuring up the amazing virtual worlds of video games and Hollywood films. Today, NVIDIA’s GPU simulates human intelligence, running deep learning algorithms and acting as the brain of computers, robots, and self-driving cars that can perceive and understand the world. This is our life’s work — to amplify human imagination and intelligence. THE NVIDIA GPU DEFINES MODERN COMPUTER GRAPHICS Our invention of the GPU in 1999 made possible real-time programmable shading, which gives artists an infinite palette for expression. We’ve led the field of visual computing since. SIMULATING HUMAN IMAGINATION Digital artists, industrial designers, filmmakers, and broadcasters rely on NVIDIA Quadro® pro graphics to bring their imaginations to life. -
Providing a Robust Tools Landscape for CORAL Machines
Providing a Robust Tools Landscape for CORAL Machines 4th Workshop on Extreme Scale Programming Tools @ SC15 in AusGn, Texas November 16, 2015 Dong H. Ahn Lawrence Livermore Naonal Lab Michael Brim Oak Ridge Naonal Lab Sco4 Parker Argonne Naonal Lab Gregory Watson IBM Wesley Bland Intel CORAL: Collaboration of ORNL, ANL, LLNL Current DOE Leadership Computers Objective - Procure 3 leadership computers to be Titan (ORNL) Sequoia (LLNL) Mira (ANL) 2012 - 2017 sited at Argonne, Oak Ridge and Lawrence Livermore 2012 - 2017 2012 - 2017 in 2017. Leadership Computers - RFP requests >100 PF, 2 GiB/core main memory, local NVRAM, and science performance 4x-8x Titan or Sequoia Approach • Competitive process - one RFP (issued by LLNL) leading to 2 R&D contracts and 3 computer procurement contracts • For risk reduction and to meet a broad set of requirements, 2 architectural paths will be selected and Oak Ridge and Argonne must choose different architectures • Once Selected, Multi-year Lab-Awardee relationship to co-design computers • Both R&D contracts jointly managed by the 3 Labs • Each lab manages and negotiates its own computer procurement contract, and may exercise options to meet their specific needs CORAL Innova,ons and Value IBM, Mellanox, and NVIDIA Awarded $325M U.S. Department of Energy’s CORAL Contracts • Scalable system solu.on – scale up, scale down – to address a wide range of applicaon domains • Modular, flexible, cost-effec.ve, • Directly leverages OpenPOWER partnerships and IBM’s Power system roadmap • Air and water cooling • Heterogeneous -
Nvidia Autonomous Driving Platform
NVIDIA AUTONOMOUS DRIVING PLATFORM Apr, 2017 Sr. Solution Architect , Marcus Oh Who is NVIDIA Deep Learning in Autonomous Driving Training Infra & Machine / DIGIT Contents DRIVE PX2 DRIVEWORKS USECASE Example Next Generation AD Platform 2 NVIDIA CONFIDENTIAL — DRIVE PX2 DEVELOPMENT PLATFORM NVIDIA Founded in 1993 | CEO & Co-founder: Jen-Hsun Huang | FY16 revenue: $5.01B | 9,500 employees | 7,300 patents | HQ in Santa Clara, CA | 3 NVIDIA — “THE AI COMPUTING COMPANY” GPU Computing Computer Graphics Artificial Intelligence 4 DEEP LEARNING IN AUTONOMOUS DRIVING 5 WHAT IS DEEP LEARNING? Input Result 6 Deep Learning Framework Forward Propagation Repeat “turtle” Tree Training Backward Propagation Cat Compute weight update to nudge Dog from “turtle” towards “dog” Trained Neural Net Model Inference “cat” 7 REINFORCEMENT LEARNING How’s it work? F A reinforcement learning agent includes: state (environment) actions (controls) reward (feedback) A value function predicts the future reward of performing actions in the current state Given the recent state, action with the maximum estimated future reward is chosen for execution For agents with complex state spaces, deep networks are used as Q-value approximator Numerical solver (gradient descent) optimizes github.com/dusty-nv/jetson-reinforcement the network on-the-fly based on reward inputs SELF-DRIVING CARS ARE AN AI CHALLENGE PERCEPTION AI PERCEPTION AI LOCALIZATION DRIVING AI DEEP LEARNING 9 NVIDIA AI SYSTEM FOR AUTONOMOUS DRIVING MAPPING KALDI LOCALIZATION DRIVENET Training on Driving with NVIDIA DGX-1 NVIDIA DRIVE PX 2 DGX-1 DriveWorks 10 TRAINING INFRA & MACHINE / DIGIT 11 170X SPEED-UP OVER COTS SERVER MICROSOFT COGNITIVE TOOLKIT SUPERCHARGED ON NVIDIA DGX-1 170x Faster (AlexNet images/sec) 13,000 78 8x Tesla P100 | 170TF FP16 | NVLink hybrid cube mesh CPU Server DGX-1 AlexNet training batch size 128, Dual Socket E5-2699v4, 44 cores CNTK 2.0b2 for CPU. -
Investigations of Various HPC Benchmarks to Determine Supercomputer Performance Efficiency and Balance
Investigations of Various HPC Benchmarks to Determine Supercomputer Performance Efficiency and Balance Wilson Lisan August 24, 2018 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2018 Abstract This dissertation project is based on participation in the Student Cluster Competition (SCC) at the International Supercomputing Conference (ISC) 2018 in Frankfurt, Germany as part of a four-member Team EPCC from The University of Edinburgh. There are two main projects which are the team-based project and a personal project. The team-based project focuses on the optimisations and tweaks of the HPL, HPCG, and HPCC benchmarks to meet the competition requirements. At the competition, Team EPCC suffered with hardware issues that shaped the cluster into an asymmetrical system with mixed hardware. Unthinkable and extreme methods were carried out to tune the performance and successfully drove the cluster back to its ideal performance. The personal project focuses on testing the SCC benchmarks to evaluate the performance efficiency and system balance at several HPC systems. HPCG fraction of peak over HPL ratio was used to determine the system performance efficiency from its peak and actual performance. It was analysed through HPCC benchmark that the fraction of peak ratio could determine the memory and network balance over the processor or GPU raw performance as well as the possibility of the memory or network bottleneck part. Contents Chapter 1 Introduction .............................................................................................. -
Summit Supercomputer
Cooling System Overview: Summit Supercomputer David Grant, PE, CEM, DCEP HPC Mechanical Engineer Oak Ridge National Laboratory Corresponding Member of ASHRAE TC 9.9 Infrastructure Co-Lead - EEHPCWG ORNL is managed by UT-Battelle, LLC for the US Department of Energy Today’s Presentation #1 ON THE TOP 500 LIST • System Description • Cooling System Components • Cooling System Performance NOVEMBER 2018 #1 JUNE 2018 #1 2 Feature Titan Summit Summit Node Overview Application Baseline 5-10x Titan Performance Number of 18,688 4,608 Nodes Node 1.4 TF 42 TF performance Memory per 32 GB DDR3 + 6 GB 512 GB DDR4 + 96 GB Node GDDR5 HBM2 NV memory per 0 1600 GB Node Total System >10 PB DDR4 + HBM2 + 710 TB Memory Non-volatile System Gemini (6.4 GB/s) Dual Rail EDR-IB (25 GB/s) Interconnect Interconnect 3D Torus Non-blocking Fat Tree Topology Bi-Section 15.6 TB/s 115.2 TB/s Bandwidth 1 AMD Opteron™ 2 IBM POWER9™ Processors 1 NVIDIA Kepler™ 6 NVIDIA Volta™ 32 PB, 1 TB/s, File System 250 PB, 2.5 TB/s, GPFS™ Lustre® Peak Power 9 MW 13 MW Consumption 3 System Description – How do we cool it? • >100,000 liquid connections 4 System Description – What’s in the data center? • Passive RDHXs- 215,150ft2 (19,988m2) of total heat exchange surface (>20X the area of the data center) – With a 70°F (21.1 °C) entering water temperature, the room averages ~73°F (22.8°C) with ~3.5MW load and ~75.5°F (23.9°C) with ~10MW load. -
Fabric Manager for NVIDIA Nvswitch Systems
Fabric Manager for NVIDIA NVSwitch Systems User Guide / Virtualization / High Availability Modes DU-09883-001_v0.7 | January 2021 Document History DU-09883-001_v0.7 Version Date Authors Description of Change 0.1 Oct 25, 2019 SB Initial Beta Release 0.2 Mar 23, 2020 SB Updated error handling and bare metal mode 0.3 May 11, 2020 YL Updated Shared NVSwitch APIs section with new API information 0.4 July 7, 2020 SB Updated MIG interoperability and high availability details. 0.5 July 17, 2020 SB Updated running as non-root instructions 0.6 Aug 03, 2020 SB Updated installation instructions based on CUDA repo and updated SXid error details 0.7 Jan 26, 2021 GT, CC Updated with vGPU multitenancy virtualization mode Fabric Ma nager fo r NVI DIA NVSwitch Sy stems DU-09883-001_v0.7 | ii Table of Contents Chapter 1. Overview ...................................................................................................... 1 1.1 Introduction .............................................................................................................1 1.2 Terminology ............................................................................................................1 1.3 NVSwitch Core Software Stack .................................................................................2 1.4 What is Fabric Manager?..........................................................................................3 Chapter 2. Getting Started With Fabric Manager ...................................................... 5 2.1 Basic Components...................................................................................................5 -
NVIDIA Powers the World's Top 13 Most Energy Efficient Supercomputers
NVIDIA Powers the World's Top 13 Most Energy Efficient Supercomputers ISC -- Advancing the path to exascale computing, NVIDIA today announced that the NVIDIA® Tesla® AI supercomputing platform powers the top 13 measured systems on the new Green500 list of the world's most energy-efficient high performance computing (HPC) systems. All 13 use NVIDIA Tesla P100 data center GPU accelerators, including four systems based on the NVIDIA DGX-1™ AI supercomputer. • As Moore's Law slows, NVIDIA Tesla GPUs continue to extend computing, improving performance 3X in two years • Tesla V100 GPUs projected to provide U.S. Energy Department's Summit supercomputer with 200 petaflops of HPC, 3 exaflops of AI performance • Major cloud providers commit to bring NVIDIA Volta GPU platform to market Advancing the path to exascale computing, NVIDIA today announced that the NVIDIA® Tesla® AI supercomputing platform powers the top 13 measured systems on the new Green500 list of the world's most energy-efficient high performance computing (HPC) systems. All 13 use NVIDIA Tesla P100 data center GPU accelerators, including four systems based on the NVIDIA DGX-1™ AI supercomputer. NVIDIA today also released performance data illustrating that NVIDIA Tesla GPUs have improved performance for HPC applications by 3X over the Kepler architecture released two years ago. This significantly boosts performance beyond what would have been predicted by Moore's Law, even before it began slowing in recent years. Additionally, NVIDIA announced that its Tesla V100 GPU accelerators -- which combine AI and traditional HPC applications on a single platform -- are projected to provide the U.S. -
NVIDIA DGX-1 System Architecture White Paper
White Paper NVIDIA DGX-1 System Architecture The Fastest Platform for Deep Learning TABLE OF CONTENTS 1.0 Introduction ........................................................................................................ 2 2.0 NVIDIA DGX-1 System Architecture .................................................................... 3 2.1 DGX-1 System Technologies ........................................................................... 5 3.0 Multi-GPU and Multi-System Scaling with NVLink and InfiniBand ..................... 6 3.1 DGX-1 NVLink Network Topology for Efficient Application Scaling ................ 7 3.2 Scaling Deep Learning Training on NVLink ................................................... 10 3.3 InfiniBand for Multi-System Scaling of DGX-1 Systems ................................ 13 4.0 DGX-1 Software................................................................................................. 16 4.1 NVIDIA CUDA Toolkit.................................................................................... 17 4.2 NVIDIA Docker.............................................................................................. 18 4.3 NVIDIA Deep Learning SDK .......................................................................... 19 4.4 NCCL............................................................................................................. 20 5.0 Deep Learning Frameworks for DGX-1.............................................................. 22 5.1 NVIDIA Caffe................................................................................................