CSIRO PUBLISHING Functional P lant Biology, 2013, 40, 400-408 http://dx.doi.org/10.1071/FP12204 The anatomical basis of the link between density and mechanical strength in mangrove branches Nadia S. SantiniA, Nele SchmitzB/C, Vicki BennionA and Catherine E. LovelockA/D AThe School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia, laboratory for Plant Biology and Nature Management, Vrije Universiteit Brussel, Brussels 1 050, Belgium. cLaboratory for W ood Biology and Xylarium, Royal Museum for Central Africa, Leuvensesteenweg 1 3, 3080 Tervuren, Belgium. DCorresponding author. Email:
[email protected] Abstract. Tree branches are important as they support the canopy, which controls photo synthetic carbon gain and determines ecological interactions such as competition with neighbours. Mangrove trees are subject to high wind speeds, strong tidal flows and waves that can damage their branches. The survival and establishment of mangroves partly depend on the structural and mechanical characteristics of their branches. In addition, mangroves are exposed to soils that vary in salinity. Highly saline conditions can increase the tension in the water column, imposing mechanical stresses on the xylem vessels. Here, we investigated how mechanical strength, assessed as the modulus of elasticity (MOE) and the modulus of rupture (MOR), and density relate to the anatomical characteristics of intact mangrove branches from southeast Queensland and whether the mechanical strength of branches varies among mangrove species. Mechanical strength was positively correlated with density of mangrove intact branches. Mechanical strength (MOE) varied among species, with Avicennia marina (Forssk.) Vierh. branches having the highest mechanical strength (2079 ± 176 MPa), and Rhizophora stylosa Griff, and Bruguiera gymnorrhiza (L.) Savigny ex Lam.