Characterization and Correction of Analog-To-Digital Converters

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Correction of Analog-To-Digital Converters Characterization and Correction of Analog-to-Digital Converters HENRIK F. LUNDIN Doctoral Thesis Stockholm, Sweden 2005 TRITA–S3–SB-0575 ISSN 1103-8039 KTH School of Electrical Engineering ISRN KTH/SB/R--05/75--SE SE-100 44 Stockholm ISBN 91-7178-210-9 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i signalbehand- ling fredagen den 16 december 2005 klockan 13.00 i D3, Kungl Tekniska högskolan, Lindstedtsvägen 5, Stockholm. c Henrik Fahlberg Lundin, november 2005 Tryck: Universitetsservice US AB iii Abstract Analog-to-digital conversion and quantization constitute the topic of this thesis. Post- correction of analog-to-digital converters (ADCs) is considered in particular. ADCs usu- ally exhibit non-ideal behavior in practice. These non-idealities spawn distortions in the converters output. Whenever the errors are systematic, it is possible to mitigate them by mapping the output into a corrected value. The work herein is focused on problems associated with post-correction using look-up tables. All results presented are supported by experiments or simulations. The first problem considered is characterization of the ADC. This is in fact an esti- mation problem, where the transfer function of the converter should be determined. This thesis deals with estimation of quantization region midpoints, aided by a reference signal. A novel estimator based on order statistics is proposed, and is shown to have superior performance compared with the sample mean traditionally used. The second major area deals with predicting the performance of an ADC after post- correction. A converter with static differential nonlinearities and random input noise is considered. A post-correction is applied, but with limited (fixed-point) resolution in the corrected values. An expression for the signal-to-noise and distortion ratio after post- correction is provided. It is shown that the performance is dependent on the variance of the differential nonlinearity, the variance of the random noise, the resolution of the converter and the precision of the correction values. Finally, the problem of addressing, or indexing, the correction look-up table is dealt with. The indexing method determines both the memory requirements of the table and the ability to describe and correct dynamically dependent error effects. The work here is devoted to state-space–type indexing schemes, which determine the index from a num- ber of consecutive samples. There is a tradeoff between table size and dynamics: more samples used for indexing gives a higher dependence on dynamic, but also a larger ta- ble. An indexing scheme that uses only a subset of the bits in each sample is proposed. It is shown how the selection of bits can be optimized, and the exemplary results show that a substantial reduction in memory size is possible with only marginal reduction of performance. iv Sammanfattning Denna avhandling behandlar analog–digitalomvandling. I synnerhet behandlas post- korrektion av analog–digitalomvandlare (A/D-omvandlare). A/D-omvandlare är i prak- tiken behäftade med vissa fel som i sin tur ger upphov till distorsion i omvandlarens utsignal. Om felen har ett systematiskt samband med utsignalen kan de avhjälpas genom att korrigera utsignalen i efterhand. Detta verk behandlar den form av postkorrektion som implementeras med hjälp av en tabell ur vilken korrektionsvärden hämtas. Innan en A/D-omvandlare kan korrigeras måste felen i den mätas upp. Detta görs genom att estimera omvandlarens överföringsfunktion. I detta arbete behandlas speciellt problemet att skatta kvantiseringsintervallens mittpunkter. Det antas härvid att en refe- renssignal finns tillgänglig som grund för skattningen. En skattare som baseras på sorterade data visas vara bättre än den vanligtvis använda skattaren baserad på sampelmedelvärde. Nästa huvudbidrag visar hur resultatet efter korrigering av en A/D-omvandlare kan predikteras. Omvandlaren antas här ha en viss differentiell olinjäritet och insignalen antas påverkad av ett slumpmässigt brus. Ett postkorrektionssystem, implementerat med be- gränsad precision, korrigerar utsignalen från A/D-omvandlaren. Ett utryck härleds som beskriver signal–brusförhållandet efter postkorrektion. Förhållandet visar sig bero på den differentiella olinjäritetens varians, det slumpmässiga brusets varians, omvandlarens upp- lösning samt precisionen med vilken korrektionstermerna beskrivs. Till sist behandlas indexering av korrektionstabeller. Valet av metod för att indexera en korrektionstabell påverkar såväl tabellens storlek som förmågan att beskriva och korrigera dynamiska fel. I avhandlingen behandlas i synnerhet tillståndsmodellbaserade metoder, det vill säga metoder där tabellindex bildas som en funktion utav flera på varandra föl- jande sampel. Allmänt gäller att ju fler sampel som används för att bilda ett tabellindex, desto större blir tabellen, samtidigt som förmågan att beskriva dynamiska fel ökar. En in- dexeringsmetod som endast använder en delmängd av bitarna i varje sampel föreslås här. Vidare så påvisas hur valet av indexeringsbitar kan göras optimalt, och experimentella utvärderingar åskådliggör att tabellstorleken kan reduceras avsevärt utan att fördenskull minska prestanda mer än marginellt. De teorier och resultat som framförs här har utvärderats med experimentella A/D- omvandlardata eller genom datorsimuleringar. Acknowledgements As a PhD student, you sometimes get the response ‘That must be difficult!’ after having told what you do for a living. Well, I’ll tell you what the really difficult part of it all is: writing the acknowledgements. In this thesis that you now hold in you hands, I’ve spent some 190 pages elaborating at great length on a subject so narrow that almost nobody has ever heard of it. Meanwhile, I have less than two pages to express feelings such as joy and gratitude, and to declare the importance of friends and family and of great colleagues. And this is the one part that everyone reads—if you do not flip this pages to see what’s coming next, you will be in good company, but will perhaps miss out on some interesting results... First of all I’d like to express my deepest gratitude to my supervisors Peter Händel and Mikael Skoglund. From the first day of my Master’s thesis project, which is where my researching days started, I’ve always felt your support and your confidence in me. Without your skillful supervision and deep knowledge in the various aspects of signal processing, this thesis would not have been what it is today. I thank you for all this. The Signal Processing group, with its past and present members, has been a never-ending source of knowledge, inspiration and, most important, great fun. The number of lunches and coffee breaks that have extended way beyond reasonable time, simply because of interesting and amusing discussions, are uncountable. Al- though all of you contribute to the unique and warm atmosphere, I must extend my special thanks to a few of you: The first one out is Tomas Andersson, for putting up with me on trips around the globe, for joint research and also for being a great office neighbor. I know you are doing your best to “keep up that good Swedish tradition.” Although Niclas Björsell spends his days in Gävle, to me he is a significant part of the Signal Processing group. Thanks for good company on several conference trips, and for your valuable feedback on my work. I thank the computer support group, Nina Unkuri and Andreas Stenhall, for splendid computer support. Together with Tomas Andersson we have also shown that shouting is the best form of intra-office communication between neighboring rooms. Karin Demin deserves recognition for her impeccable administration of this re- search group – whatever you need to know, Karin finds it in her binders within v vi seconds. Reaching outside the department, I’d like to thank Professor Pasquale Daponte, Associate Professor Sergio Rapuano, Dr. Luca De Vito and the rest of the people at L.E.S.I.M., the Laboratory of Signal and Measurement Information Processing at the University of Sannio in Benevento, Italy. They make me feel very welcome when visiting Benevento, and the collaboration has lead to joint publications. I thank Professor Paolo Carbone, Associate Professor Ana Rusu, Dr. Jan-Erik Eklund and Professor Håkan Johansson for acting opponent and grading committee during my public defense of this thesis. I would like to thank my friends for keeping my mind off my work from time to time. Of course, I thank my parents for their support and for patiently waiting the twenty-two years it took me to finish school. Finally, I thank my wife Therese for her infinite support and love. I would not have made it without you. Henrik Fahlberg Lundin Stockholm, November 2005 Contents Contents vii 1 Introduction 1 1.1 Background................................ 2 1.2 TheAnalog-to-DigitalConverter . 3 1.3 ADCArchitectures............................ 9 1.4 DescribingA/DConverterPerformance . 12 1.5 ThePost-correctionProblem . 16 1.6 OutlineandContributions. 17 1.7 Notation.................................. 21 1.8 Abbreviations............................... 23 I ADCCorrectionMethods:AnOverview 25 2 Introduction to Part I 27 3 Look-Up Table Based Methods 29 3.1 ClassificationofLUTMethods . 29 3.2 IndexingSchemes............................. 30 3.3 CorrectionValues............................. 33 3.4 CalibrationofLUTs ........................... 36 4 Dithering Based Methods 39 4.1 Statistical Theory of Quantization
Recommended publications
  • NTGAN: Learning Blind Image Denoising Without Clean Reference
    RUI ZHAO, DANIEL P.K. LUN, KIN-MAN LAM: NTGAN 1 NTGAN: Learning Blind Image Denoising without Clean Reference Rui Zhao Department of Electronic and [email protected] Information Engineering, Daniel P.K. Lun The Hong Kong Polytechnic University, [email protected] Hong Kong, China Kin-Man Lam [email protected] Abstract Recent studies on learning-based image denoising have achieved promising perfor- mance on various noise reduction tasks. Most of these deep denoisers are trained ei- ther under the supervision of clean references, or unsupervised on synthetic noise. The assumption with the synthetic noise leads to poor generalization when facing real pho- tographs. To address this issue, we propose a novel deep unsupervised image-denoising method by regarding the noise reduction task as a special case of the noise transference task. Learning noise transference enables the network to acquire the denoising ability by only observing the corrupted samples. The results on real-world denoising benchmarks demonstrate that our proposed method achieves state-of-the-art performance on remov- ing realistic noises, making it a potential solution to practical noise reduction problems. 1 Introduction Convolutional neural networks (CNNs) have been widely studied over the past decade in various computer vision applications, including image classification [13], object detection [29], and image restoration [35]. In spite of high effectiveness, CNN models always require a large-scale dataset with reliable reference for training. However, in terms of low-level vision tasks, such as image denoising and image super-resolution, the reliable reference data is generally hard to access, which makes these tasks more challenging and difficult.
    [Show full text]
  • High-Quality Self-Supervised Deep Image Denoising
    High-Quality Self-Supervised Deep Image Denoising Samuli Laine Tero Karras Jaakko Lehtinen Timo Aila NVIDIA∗ NVIDIA NVIDIA, Aalto University NVIDIA Abstract We describe a novel method for training high-quality image denoising models based on unorganized collections of corrupted images. The training does not need access to clean reference images, or explicit pairs of corrupted images, and can thus be applied in situations where such data is unacceptably expensive or im- possible to acquire. We build on a recent technique that removes the need for reference data by employing networks with a “blind spot” in the receptive field, and significantly improve two key aspects: image quality and training efficiency. Our result quality is on par with state-of-the-art neural network denoisers in the case of i.i.d. additive Gaussian noise, and not far behind with Poisson and impulse noise. We also successfully handle cases where parameters of the noise model are variable and/or unknown in both training and evaluation data. 1 Introduction Denoising, the removal of noise from images, is a major application of deep learning. Several architectures have been proposed for general-purpose image restoration tasks, e.g., U-Nets [23], hierarchical residual networks [20], and residual dense networks [31]. Traditionally, the models are trained in a supervised fashion with corrupted images as inputs and clean images as targets, so that the network learns to remove the corruption. Lehtinen et al. [17] introduced NOISE2NOISE training, where pairs of corrupted images are used as training data. They observe that when certain statistical conditions are met, a network faced with the impossible task of mapping corrupted images to corrupted images learns, loosely speaking, to output the “average” image.
    [Show full text]
  • Learning Deep Image Priors for Blind Image Denoising
    Learning Deep Image Priors for Blind Image Denoising Xianxu Hou 1 Hongming Luo 1 Jingxin Liu 1 Bolei Xu 1 Ke Sun 2 Yuanhao Gong 1 Bozhi Liu 1 Guoping Qiu 1,3 1 College of Information Engineering and Guangdong Key Lab for Intelligent Information Processing, Shenzhen University, China 2 School of Computer Science, The University of Nottingham Ningbo China 3 School of Computer Science, The University of Nottingham, UK Abstract ods comes from the effective image prior modeling over the input images [5, 14, 20]. State of the art model-based meth- Image denoising is the process of removing noise from ods such as BM3D [12] and WNNM [20] can be further noisy images, which is an image domain transferring task, extended to remove unknown noises. However, there are a i.e., from a single or several noise level domains to a photo- few drawbacks of these methods. First, these methods usu- realistic domain. In this paper, we propose an effective im- ally involve a complex and time-consuming optimization age denoising method by learning two image priors from process in the testing stage. Second, the image priors em- the perspective of domain alignment. We tackle the domain ployed in most of these approaches are hand-crafted, such alignment on two levels. 1) the feature-level prior is to learn as nonlocal self-similarity and gradients, which are mainly domain-invariant features for corrupted images with differ- based on the internal information of the input image without ent level noise; 2) the pixel-level prior is used to push the any external information.
    [Show full text]
  • Layered Neural Rendering for Retiming People in Video
    Layered Neural Rendering for Retiming People in Video ERIKA LU, University of Oxford, Google Research FORRESTER COLE, Google Research TALI DEKEL, Google Research WEIDI XIE, University of Oxford ANDREW ZISSERMAN, University of Oxford DAVID SALESIN, Google Research WILLIAM T. FREEMAN, Google Research MICHAEL RUBINSTEIN, Google Research Input Video Frame t Frame t1 (child I jumps) Frame t2 (child II jumps) Frame t3 (child III jumps) Our Retiming Result Our Output Layers Frame t1 (all stand) Frame t2 (all jump) Frame t3 (all in water) Fig. 1. Making all children jump into the pool together — in post-processing! In the original video (left, top) each child is jumping into the poolata different time. In our computationally retimed video (left, bottom), the jumps of children I and III are time-aligned with that of child II, such thattheyalljump together into the pool (notice that child II remains unchanged in the input and output frames). In this paper, we present a method to produce this and other people retiming effects in natural, ordinary videos. Our method is based on a novel deep neural network that learns a layered decomposition oftheinput video (right). Our model not only disentangles the motions of people in different layers, but can also capture the various scene elements thatare correlated with those people (e.g., water splashes as the children hit the water, shadows, reflections). When people are retimed, those related elements get automatically retimed with them, which allows us to create realistic and faithful re-renderings of the video for a variety of retiming effects. The full input and retimed sequences are available in the supplementary video.
    [Show full text]
  • Deep Image Prior for Undersampling High-Speed Photoacoustic Microscopy
    Photoacoustics 22 (2021) 100266 Contents lists available at ScienceDirect Photoacoustics journal homepage: www.elsevier.com/locate/pacs Deep image prior for undersampling high-speed photoacoustic microscopy Tri Vu a,*, Anthony DiSpirito III a, Daiwei Li a, Zixuan Wang c, Xiaoyi Zhu a, Maomao Chen a, Laiming Jiang d, Dong Zhang b, Jianwen Luo b, Yu Shrike Zhang c, Qifa Zhou d, Roarke Horstmeyer e, Junjie Yao a a Photoacoustic Imaging Lab, Duke University, Durham, NC, 27708, USA b Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China c Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA d Department of Biomedical Engineering and USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90089, USA e Computational Optics Lab, Duke University, Durham, NC, 27708, USA ARTICLE INFO ABSTRACT Keywords: Photoacoustic microscopy (PAM) is an emerging imaging method combining light and sound. However, limited Convolutional neural network by the laser’s repetition rate, state-of-the-art high-speed PAM technology often sacrificesspatial sampling density Deep image prior (i.e., undersampling) for increased imaging speed over a large field-of-view. Deep learning (DL) methods have Deep learning recently been used to improve sparsely sampled PAM images; however, these methods often require time- High-speed imaging consuming pre-training and large training dataset with ground truth. Here, we propose the use of deep image Photoacoustic microscopy Raster scanning prior (DIP) to improve the image quality of undersampled PAM images. Unlike other DL approaches, DIP requires Undersampling neither pre-training nor fully-sampled ground truth, enabling its flexible and fast implementation on various imaging targets.
    [Show full text]
  • Image Deconvolution with Deep Image Prior: Final Report
    Image deconvolution with deep image prior: Final Report Abstract tion kernel is given (Sezan & Tekalp, 1990), i.e. recovering Image deconvolution has always been a hard in- X with knowing K in Equation 1. This problem is ill-posed, verse problem because of its mathematically ill- because simply applying the inverse of the convolution op- −1 posed property (Chan & Wong, 1998). A recent eration on degraded image B with kernel K, i.e. B∗ K, −1 work (Ulyanov et al., 2018) proposed deep im- gives an inverted noise term E∗ K, which dominates the age prior (DIP) which uses neural net structures solution (Hansen et al., 2006). to represent image prior information. This work Blind deconvolution: In reality, we can hardly obtain the mainly focuses on the task of image deconvolu- detailed kernel information, in which case the deconvolu- tion, using DIP to express image prior informa- tion problem is formulated in a blind setting (Kundur & tion and ref ne the domain of its objectives. It Hatzinakos, 1996). More concisely, blind deconvolution is proposes new energy functions for kernel-known to recover X without knowing K. This task is much more and blind deconvolution respectively in terms of challenging than it is under non-blind settings, because the DIP, and uses hourglass ConvNet (Newell et al., observed information becomes less and the domains of the 2016) as the DIP structures to represent sharpness variables become larger (Chan & Wong, 1998). or other higher level priors of natural images, as well as the prior in degradation kernels. From the In image deconvolution, prior information on unknown results on 6 standard test images, we f rst prove images and kernels (in blind settings) can signif cantly im- that DIP with ConvNet structure is strongly ca- prove the deconvolved results.
    [Show full text]
  • PROCEEDINGS of the ICA CONGRESS (Onl the ICA PROCEEDINGS OF
    ine) - ISSN 2415-1599 ISSN ine) - PROCEEDINGS OF THE ICA CONGRESS (onl THE ICA PROCEEDINGS OF Page intentionaly left blank 22nd International Congress on Acoustics ICA 2016 PROCEEDINGS Editors: Federico Miyara Ernesto Accolti Vivian Pasch Nilda Vechiatti X Congreso Iberoamericano de Acústica XIV Congreso Argentino de Acústica XXVI Encontro da Sociedade Brasileira de Acústica 22nd International Congress on Acoustics ICA 2016 : Proceedings / Federico Miyara ... [et al.] ; compilado por Federico Miyara ; Ernesto Accolti. - 1a ed . - Gonnet : Asociación de Acústicos Argentinos, 2016. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-987-24713-6-1 1. Acústica. 2. Acústica Arquitectónica. 3. Electroacústica. I. Miyara, Federico II. Miyara, Federico, comp. III. Accolti, Ernesto, comp. CDD 690.22 ISSN 2415-1599 ISBN 978-987-24713-6-1 © Asociación de Acústicos Argentinos Hecho el depósito que marca la ley 11.723 Disclaimer: The material, information, results, opinions, and/or views in this publication, as well as the claim for authorship and originality, are the sole responsibility of the respective author(s) of each paper, not the International Commission for Acoustics, the Federación Iberoamaricana de Acústica, the Asociación de Acústicos Argentinos or any of their employees, members, authorities, or editors. Except for the cases in which it is expressly stated, the papers have not been subject to peer review. The editors have attempted to accomplish a uniform presentation for all papers and the authors have been given the opportunity
    [Show full text]
  • Controlling Neural Networks Via Energy Dissipation
    Controlling Neural Networks via Energy Dissipation Michael Moeller Thomas Mollenhoff¨ Daniel Cremers University of Siegen TU Munich TU Munich [email protected] [email protected] [email protected] Abstract and computing its Radon transform, respectively. Mathe- matically, the above problems can be phrased as linear in- The last decade has shown a tremendous success in verse problems in which one tries to recover the desired solving various computer vision problems with the help of quantity uˆ from measurements f that arise from applying deep learning techniques. Lately, many works have demon- an application-dependent linear operator A to the unknown strated that learning-based approaches with suitable net- and contain additive noise ξ: work architectures even exhibit superior performance for the solution of (ill-posed) image reconstruction problems f = Auˆ + ξ. (1) such as deblurring, super-resolution, or medical image re- Unfortunately, most practically relevant inverse problems construction. The drawback of purely learning-based meth- are ill-posed, meaning that equation (1) either does not de- ods, however, is that they cannot provide provable guaran- termine uˆ uniquely even if ξ = 0, or tiny amounts of noise tees for the trained network to follow a given data formation ξ can alter the naive prediction of uˆ significantly. These process during inference. In this work we propose energy phenomena have been well-investigated from a mathemat- dissipating networks that iteratively compute a descent di- ical perspective with regularization methods being the tool rection with respect to a given cost function or energy at the to still obtain provably stable reconstructions.
    [Show full text]
  • 2007 Registration Document
    2007 REGISTRATION DOCUMENT (www.renault.com) REGISTRATION DOCUMENT REGISTRATION 2007 Photos cre dits: cover: Thomas Von Salomon - p. 3 : R. Kalvar - p. 4, 8, 22, 30 : BLM Studio, S. de Bourgies S. BLM Studio, 30 : 22, 8, 4, Kalvar - p. R. 3 : Salomon - p. Von Thomas cover: dits: Photos cre 2007 REGISTRATION DOCUMENT INCLUDING THE MANAGEMENT REPORT APPROVED BY THE BOARD OF DIRECTORS ON FEBRUARY 12, 2008 This Registration Document is on line on the website www .renault.com (French and English versions) and on the AMF website www .amf- france.org (French version only). TABLE OF CONTENTS 0 1 05 RENAULT AND THE GROUP 5 RENAULT AND ITS SHAREHOLDERS 157 1.1 Presentation of Renault and the Group 6 5.1 General information 158 1.2 Risk factors 24 5.2 General information about Renault’s share capital 160 1.3 The Renault-Nissan Alliance 25 5.3 Market for Renault shares 163 5.4 Investor relations policy 167 02 MANAGEMENT REPORT 43 06 2.1 Earnings report 44 MIXED GENERAL MEETING 2.2 Research and development 62 OF APRIL 29, 2008: PRESENTATION 2.3 Risk management 66 OF THE RESOLUTIONS 171 The Board first of all proposes the adoption of eleven resolutions by the Ordinary General Meeting 172 Next, six resolutions are within the powers of 03 the Extraordinary General Meeting 174 SUSTAINABLE DEVELOPMENT 79 Finally, the Board proposes the adoption of two resolutions by the Ordinary General Meeting 176 3.1 Employee-relations performance 80 3.2 Environmental performance 94 3.3 Social performance 109 3.4 Table of objectives (employee relations, environmental
    [Show full text]
  • Clock Jitter Effects on the Performance of ADC Devices
    Clock Jitter Effects on the Performance of ADC Devices Roberto J. Vega Luis Geraldo P. Meloni Universidade Estadual de Campinas - UNICAMP Universidade Estadual de Campinas - UNICAMP P.O. Box 05 - 13083-852 P.O. Box 05 - 13083-852 Campinas - SP - Brazil Campinas - SP - Brazil [email protected] [email protected] Karlo G. Lenzi Centro de Pesquisa e Desenvolvimento em Telecomunicac¸oes˜ - CPqD P.O. Box 05 - 13083-852 Campinas - SP - Brazil [email protected] Abstract— This paper aims to demonstrate the effect of jitter power near the full scale of the ADC, the noise power is on the performance of Analog-to-digital converters and how computed by all FFT bins except the DC bin value (it is it degrades the quality of the signal being sampled. If not common to exclude up to 8 bins after the DC zero-bin to carefully controlled, jitter effects on data acquisition may severely impacted the outcome of the sampling process. This analysis avoid any spectral leakage of the DC component). is of great importance for applications that demands a very This measure includes the effect of all types of noise, the good signal to noise ratio, such as high-performance wireless distortion and harmonics introduced by the converter. The rms standards, such as DTV, WiMAX and LTE. error is given by (1), as defined by IEEE standard [5], where Index Terms— ADC Performance, Jitter, Phase Noise, SNR. J is an exact integer multiple of fs=N: I. INTRODUCTION 1 s X = jX(k)j2 (1) With the advance of the technology and the migration of the rms N signal processing from analog to digital, the use of analog-to- k6=0;J;N−J digital converters (ADC) became essential.
    [Show full text]
  • Denoising and Regularization Via Exploiting the Structural Bias of Convolutional Generators
    Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators Reinhard Heckel∗ and Mahdi Soltanolkotabiy ∗Dept. of Electrical and Computer Engineering, Technical University of Munich yDept. of Electrical and Computer Engineering, University of Southern California October 31, 2019 Abstract Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. This success is often attributed to large amounts of training data. However, recent experimental findings challenge this view and instead suggest that a major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architec- tural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the single corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such as compressive sensing. In this paper we take a step towards demystifying this experimental phenomena by attributing this effect to particular architectural choices of convolutional net- works, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two layer convolutional generator to a noisy signal and prove that early- stopped gradient descent denoises/regularizes. This results relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion.
    [Show full text]
  • Effective Bits
    Application Note Effective Bits Effective Bits Testing Evaluates Dynamic Performance of Digitizing Instruments The Effective Bits Concept desired time resolution, run the digitizer at the requisite Whether you are designing or buying a digitizing sys- sampling rate. Those are simple enough answers. tem, you need some means of determining actual, Unfortunately, they can be quite misleading, too. real-life digitizing performance. How closely does the While an “8-bit digitizer” might provide close to eight output of any given analog-to-digital converter (ADC), bits of accuracy and resolution on DC or slowly waveform digitizer or digital storage oscilloscope changing signals, that will not be the case for higher actually follow any given analog input signal? speed signals. Depending on the digitizing technology At the most basic level, digitizing performance would used and other system factors, dynamic digitizing seem to be a simple matter of resolution. For the performance can drop markedly as signal speeds desired amplitude resolution, pick a digitizer with the increase. An 8-bit digitizer can drop to 6-bit, 4-bit, requisite number of “bits” (quantizing levels). For the or even fewer effective bits of performance well before reaching its specified bandwidth. Effective Bits Application Note Figure 1. When comparing digitizer performance, testing the full frequency range is important. If you are designing an ADC device, a digitizing instru- components. Thus, it may be necessary to do an ment, or a test system, it is important to understand the effective bits evaluation for purposes of comparison. If various factors affecting digitizing performance and to equipment is to be combined into a system, an effective have some means of overall performance evaluation.
    [Show full text]