REFLECTIONS on YIELD GAPS in RICE PRODUCTION: HOW to NARROW the GAPS 26 by Mahmud Duwayri, Dat Van Tran and Van Nguu Nguyen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rice Production in Japan
)33. 6OL (11& #0& #)4+%7.674' 14)#0+<#6+10 1( 6*' 70+6'& 0#6+105 14)#0+5#6+10 &'5 0#6+105 70+'5 2174 .ŏ#.+/'06#6+10 '6 .ŏ#)4+%7.674' 14)#0+<#%+¦0 &' .#5 0#%+10'5 70+ 2#4# .# #)4+%7.674# ; .# #.+/'06#%+¦0 4QOG 4QOC Contents Table des matières Índice Technical Editor/Rédacteur technique/Editor técnico: Preface v A. Ferrero and F. Vidotto Nguu Van Nguyen, AGP, FAO, Rome Préface Weed management in European rice Editing, layout, desktop publishing and graphics/ Prefacio fields 44 Rédaction, mise en page, édition électronique et graphiques/Redacción, compaginación, composición Lutte anti-adventices dans les champs electrónica y elaboración gráfica: de riz d’Europe Ruth Duffy, Rome GLOBAL OUTLOOK El control de malezas en los arrozales PERSPECTIVES MONDIALES de Europa The International Rice Commission (IRC), which PERSPECTIVAS MUNDIALES works within the framework of FAO, was established L. Zelensky, N.N. Malysheva, T.G. Mazur, on 4 January 1949 with the object of promoting national and international action in respect of C. Calpe G.D. Los and A.R. Tretyakov production, conservation, distribution and Review of the rice market situation Rice genetic potential and its application consumption of rice. Matters relating to trade are in 2007 1 in rice breeding for stress tolerance 52 outside the purview of the Commission. Examen de la situation du marché du riz Le potentiel génétique du riz et ses Membership of the Commission is open to all FAO en 2007 applications à la sélection de variétés Member Nations and Associate Members who accept Examen de la situación mundial del arroz résistantes au stress the constitution of the IRC. -
This Is Northeast China Report Categories: Market Development Reports Approved By: Roseanne Freese Prepared By: Roseanne Freese
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 12/30/2016 GAIN Report Number: SH0002 China - Peoples Republic of Post: Shenyang This is Northeast China Report Categories: Market Development Reports Approved By: Roseanne Freese Prepared By: Roseanne Freese Report Highlights: Home to winter sports, ski resorts, and ancient Manchurian towns, Dongbei or Northeastern China is home to 110 million people. With a down-home friendliness resonant of the U.S. Midwest, Dongbei’s denizens are the largest buyer of U.S. soybeans and are China’s largest consumers of beef and lamb. Dongbei companies, processors and distributors are looking for U.S. products. Dongbei importers are seeking consumer-ready products such as red wine, sports beverages, and chocolate. Processors and distributors are looking for U.S. hardwoods, potato starch, and aquatic products. Liaoning Province is also set to open China’s seventh free trade zone in 2018. If selling to Dongbei interests you, read on! General Information: This report provides trends, statistics, and recommendations for selling to Northeast China, a market of 110 million people. 1 This is Northeast China: Come See and Come Sell! Home to winter sports, ski resorts, and ancient Manchurian towns, Dongbei or Northeastern China is home to 110 million people. With a down-home friendliness resonant of the U.S. Midwest, Dongbei’s denizens are the largest buyer of U.S. soybeans and are China’s largest consumers of beef and lamb. Dongbei companies, processors and distributors are looking for U.S. -
The Structure of Rice Production in Japan and Taiwan Hiroshi FUJIKI** Kyoto Institute of Economic Research, Kyoto University
The Structure of Rice Production in Japan and Taiwan* Hiroshi FUJIKI** Kyoto Institute of Economic Research, Kyoto University Sakyo, Kyoto, 606-01, Japan * Forthcoming to Economic Development and Cultural Change. **This paper is a revised version of a part of my dissertation ( “A Study of Japanese Ricemarket Liberalization” [Ph.D.diss., University of Chicago, 1993]). I thank my thesis advisers; Yair Mundlak, Nancy Stokey and especially D. Gale Johnson who suggested the original ideas shown in this paper. I thank Chaw-hisa Tu for providing me with Taiwanese data and useful discussion on the Taiwanese economy. I am grateful to two anonymous referees for their helpful comments on the earlier version of this paper. The Structure of Rice Production in Japan and Taiwan Hiroshi Fujiki Kyoto Institute of Economic Research, Kyoto University I. Introduction This paper points out the failure of Japanese agricultural policy through an international comparison with Taiwanese agricultural policy. More specifically, the paper focuses on a comparison between Taiwanese rice production costs and those in the Non-Hokkaido region of Japan. There are many similarities between Taiwanese rice production and rice production in the Non-Hokkaido region of Japan; the farm size distribution, the variety of rice produced, and the degree of mechanization. It is also well known that the average cost of Japanese rice production decreases with farm size, as Hayami and Kawagoe for example, have shown.1 But Taiwanese rice production costs remain almost constant with respect to the scale of operation as Kuroda has confirmed.2 This paper argues that differing the government policies throughout the process of mechanizing rice production in these two very similar economies is one of the major reasons why we find such a difference in the cost structure of production. -
Department of Agricultural Economics
Staff Paper Series Staff Paper P70-1 January 1970 ELEMENTS OF INDUCED INNOVATION: A HISTORICAL PERSPECTIVE OF THE GREEN REVOLUTION By Yujiro Hayami Department of Agricultural Economics University of Minnesota Institute of Agriculture St. Paul, Minnesota 55108 P70-1 January 1970 i,,, ELEMENTS OF INDUCED INNOVATION: A HISTORICAL PERSPECTIVE OF THE GREEN REVOLUTION* . Yujiro Hayami * The research on which this paper was based was suppcmted by a grant from the Rockefeller Foundation. The author wishes to thank R. E. Evenson, B. F. .JOhf16tO~$ Simon Kuznets, L. R. Martin? R. R. Nelson, Kazushi Ohk.awa, ~. L. Peterson$ P. M. Raup, Shujiro Sawada, V. W. Ruttan and Saburo Yamada for suggestions and comments. He is indebted to Barbara Miller and Hideo Kobayashi for data collection and computation. ELEMENTS OF INDUCED INNOVATION: A HISTORICAL PERSPECTIVE OF THE GREEN REVOLUTION by Yujiro Hayami The dramatic appearance and propagation of high yielding varieties (HYV) of rice and wheat in Asia since the mid-1960’s have been heralded widely as a “green revolution”. It is generally regarded as a highly successful demonstration of how the systematic application of scientific methods can be employed to create a new technology capable of transforming the traditional agriculture of the great mass of peasants in Asia. Of particular significance is the fact that the green revolution demonstrates the process of international transmission of “ecology-bound” agricultural technology from developed countries to less developed countries through the transfer of the scientific knowledge embodied in scientists rather than through the direct transfer of known technology. It reinforces the growing recognition that advanced agricultural technology (e.g., HYV’S) existing in the temperate zone developed countries is not transplantable to tropical and sub-tropical regions without the adaptive research of high caliber scientists. -
Promotion of Rice Production and Dissemination in Africa
JICA Seminar on Promotion of Rice Production and Dissemination in Africa February, 2004 AICAD, Nairobi, Kenya Japan International Cooperation Agency Overview of the Seminar Purpose The Tokyo International Conference on African Development Ⅲ(TICADⅢ) was held in September 2003. During the conference, wide-ranging discussions were held in order to embody the New Partnership for African Development (NEPAD), emphasizing the importance of agricultural development for alleviation of poverty through economic growth. Prior to TICADⅢ, at the World Summit on Sustainable Development (WSSD) in 2002, the Japanese government expressed its support for dissemination of New Rice for Africa (NERICA) to African nations where a shortage of food is a major concern. On the other hand, in December 2003 the General Assembly (UN) designated 2004 as the Year of Rice for people to understand the important role of rice for food security and alleviation of poverty in line with Millennium Development Goals (MDGs). In this connection, the necessity of assistance to Africa was stressed and it was urgently needed to discuss how to promote support for production of rice, particularly NERICA. In the context stated above, JICA decided to hold a two-day seminar on “Promotion on Rice Production and Dissemination in Africa”, at the African Institute for Capacity Development (AICAD), Nairobi, Kenya on 10 – 11, February in 2004 (See attached paper. In addition to JICA agricultural experts and their counterparts in African countries, JICA invited participants from authorities involved in NERICA-related countries, NGOs and International organizations. The seminar aimed to identify the current situation and problems on rice and to share ideas on rice development cooperation among the participating countries/organizations. -
China – Domestic Support for Agricultural Producers
CHINA – DOMESTIC SUPPORT FOR AGRICULTURAL PRODUCERS (DS511) FIRST WRITTEN SUBMISSION OF THE UNITED STATES OF AMERICA September 19, 2017 TABLE OF CONTENTS I. INTRODUCTION ....................................................................................................................1 II. PROCEDURAL BACKGROUND ..............................................................................................5 III. FACTUAL BACKGROUND .....................................................................................................5 A. LEGAL FRAMEWORK FOR CHINA’S MARKET PRICE SUPPORT PROGRAMS............................................................................................................6 B. CHINA’S IMPLEMENTATION OF MARKET PRICE SUPPORT PROGRAMS............................................................................................................9 1. China’s Wheat Market Price Support Program .........................................10 a. China’s Wheat Production .............................................................10 b. Implementation of the Wheat MPS Program .................................10 2. China’s Indica Rice and Japonica Rice Market Price Support Measures ....................................................................................................15 a. China’s Indica Rice and Japonica Rice Production .......................15 b. Implementation of China’s Indica Rice and Japonica Rice MPS Program .................................................................................16 3. China’s Corn Market -
Exploring the Future of Intercropping in China: a Case-Study on Farm Household Decision-Making in Gansu
Does intercropping have a future in China? Insights from a case study in Gansu Province Yu Hong i Thesis committee Promotor Prof. Dr E.H. Bulte Professor of Development Economics Wageningen University & Research Co-promotors Dr N.B.M. Heerink Associate professor, Development Economics Group Wageningen University & Research Dr W. van der Werf Associate professor, Centre for Crop Systems Analysis Wageningen University & Research Other members Prof. Dr M.K. van Ittersum, Wageningen University & Research Prof. Dr S. Feng, Nanjing Agricultural University, P.R. China Dr X. Zhu, Wageningen University & Research Dr T. Feike, Julius Kühn-Institut, Kleinmachnow, Germany This research was conducted under the auspices of the Wageningen School of Social Sciences (WASS) ii Does intercropping have a future in China? Insights from a case study in Gansu Province Yu Hong Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 2 July 2018 at 1.30 p.m. in the Aula. iii Yu Hong Does intercropping have a future in China? Insights from a case study in Gansu Province, 189 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2018) With references, with summary in English ISBN: 978-94-6343-779-0 DOI: https://doi.org/10.18174/450672 iv Table of Contents 1. Introduction ................................................................................................................................... 2 1.1 Problem statement ................................................................................................................. 2 1.2 Objectives and research questions ....................................................................................... 6 1.3 Study area and data collection ............................................................................................ -
Capital Formation and Agriculture Development in China Jikun Huang
Capital Formation and Agriculture Development in China Jikun Huang Center for Chinese Agricultural Policy Chinese Academy of Sciences And Hengyun Ma College of Economics and Management Henan Agricultural University A Report Submitted to FAO, Rome August 2010 Capital Formation and Agriculture Development in China 1. Introduction In the post World War II era, modern development economists mostly agree that the role of agriculture and rural development is absolutely an integral part to process of nation building and healthy development (Johnston and Mellor, 1961; Johnston, 1970). Agriculture plays five important roles in the development of an economy: i) supplying high quality labor to factories, constructions sites and the service sector; ii) producing low cost food which will keep wages down for workers in the industrial sector; iii) producing fiber and other crops that can be inputs to production in other parts of the economy; iv) supplying commodities that can be exported and earn foreign exchange which can help finance imports of key technology packages and capital equipment; v) raising rural incomes. The view toward agricultural and rural development in the modern world has changed dramatically in the past several decades. Traditionally, agriculture was thought of an inferior partner in development. Since the size of the sector falls during development, it was logically considered that it could be ignored. Why is that leaders would ever want to invest in a sector that is shrinking? Some academics urged policy makers to treat agriculture like a black box from which resources could be costlessly extracted (Lewis, 1954). All investment was supposed to be targeted at the industry and the cities. -
Evaluation of Agricultural Policy Reforms in Japan ORGANISATION for ECONOMIC CO-OPERATION and DEVELOPMENT
Evaluation of Agricultural Policy Reforms in Japan ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. Corrigenda to OECD publications may be found on line at: www.oecd.org/publishing/corrigenda. © OECD 2009 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. -
Development of Herbicides for Paddy Rice in Japan
Weed Biology and Management 18, 75–91 (2018) REVIEW PAPER Development of herbicides for paddy rice in Japan KENSHIRO HAMAMURA* 1Japan Association for Advancement of Phyto-Regulators (JAPR), Tokyo, Japan The history of the development of herbicides for mechanized paddy rice production in Japan can be characterized by a combination of products with several ingredients, by large availabil- ity in formulation, and by application methods for labor saving in accordance with natural and social conditions of the country, for instance, around 40% of national land located in hilly and mountainous areas, small size paddy fields consolidated in approximately 0.3 ha on average and so on. As for combination products, one-shot herbicides that can control both annual and perennial weeds, including grasses, sedges and broadleaved weeds, mainly with sulfonylureas have been a major means of rice production since the 1980s. One-shot herbi- cides have been improved by using newly developed chemicals with excellent herbicidal effi- cacy, such as acetolactate synthase (ALS), 4-hydroxyphenylpyruvate dioxygenase (4-HPPD), protoporphyrinogen oxidase (PPO) and very-long-chain fatty acid elongase (VLCFAE) inhibitors, and by combining ingredients that are effective against sulfonylurea-resistant (SU- R) biotypes of lowland weeds. The latest type of one-shot herbicides can control noxious species such as Eleocharis kuroguwai as well as other ordinal species. Regarding herbicide for- mulation, “1 kg granule,”“Jumbo,”“Flowable,”“Diffusion granule” and so on have been developed to save farmers the troubles of applying herbicides. As for application methods, “at-transplanting application,”“at-irrigation inlet application” and utilization of radio- controlled helicopters or boats were put into practical use as labor-saving technology. -
Agroecological Rice Production in China: Restoring Biological Interactions Agroecological Rice Production in China: Restoring Biological Interactions
AGROECOLOGICAL RICE PRODUCTION IN CHINA: RESTORING BIOLOGICAL INTERACTIONS AGROECOLOGICAL RICE PRODUCTION IN CHINA: RESTORING BIOLOGICAL INTERACTIONS EDITED BY LUO SHIMING FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2018 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-130704-5 © FAO, 2018 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected]. -
Water Efficient Irrigation and Environmentally Sustainable Irrigated Rice Production in China
WATER EFFICIENT IRRIGATION AND ENVIRONMENTALLY SUSTAINABLE IRRIGATED RICE PRODUCTION IN CHINA Mao Zhi Professor, Department of Irrigation and Drainage, Wuhan University, Wuhan, 430072, P.R.China ABSTRACT Rice is one of the most important food crops contributing over 39% of the total food grain production in China. Out of 113 million hectares of area sown under food crops 28% is covered by rice. The traditional irrigation regime for rice, termed as “continuous deep flooding irrigation” was applied in China before 1970s. A tremendous amount of water was used for the rice growing and only a low yield of rice was obtained under this regime. Since 1980s, the industry water supply, urban and rural domestic water consumption have been increasing continuously. The shortage of water resources became an important problem and many water efficient irrigation regimes for rice have been tested, advanced, applied and spread in different regions of China. Based on the results of experiment and the experience of spread of these new irrigation regimes, the following three main kinds of water efficient irrigation regimes were found to be contributing to the sustainable increased water productivity viz. (1) combining shallow water depth with wetting and drying, (2)alternate wetting and drying and (3) semi-dry cultivation. In this paper, the standard of controlling field water, conditions and the attention points of the application for the three regimes are introduced and explained.. The causes of sustainable increase in water productivity and the environmental impacts by adopting these regimes are analyzed and discussed. 1. INTRODUCTION China is a major rice producing country having about 31 million ha under rice paddy cultivation.