The Biological and Clinical Significance of Glutaminase In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Landscape of Cancer Cell Line Metabolism
The Landscape of Cancer Cell Line Metabolism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Li, Haoxin, Shaoyang Ning, Mahmoud Ghandi, Gregory V. Kryukov, Shuba Gopal, Amy Deik, Amanda Souza, et. al. 2019. The Landscape of Cancer Cell Line Metabolism. Nature Medicine 25, no. 5: 850-860. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41899268 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 November 08. Published in final edited form as: Nat Med. 2019 May ; 25(5): 850–860. doi:10.1038/s41591-019-0404-8. The Landscape of Cancer Cell Line Metabolism Haoxin Li1,2, Shaoyang Ning3, Mahmoud Ghandi1, Gregory V. Kryukov1, Shuba Gopal1, Amy Deik1, Amanda Souza1, Kerry Pierce1, Paula Keskula1, Desiree Hernandez1, Julie Ann4, Dojna Shkoza4, Verena Apfel5, Yilong Zou1, Francisca Vazquez1, Jordi Barretina4, Raymond A. Pagliarini4, Giorgio G. Galli5, David E. Root1, William C. Hahn1,2, Aviad Tsherniak1, Marios Giannakis1,2, Stuart L. Schreiber1,6, Clary B. Clish1,*, Levi A. Garraway1,2,*, and William R. Sellers1,2,* 1Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA 2Department -
PARSANA-DISSERTATION-2020.Pdf
DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks. -
Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense
Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Orite, Seo Yeon Kim. 2019. Glutaminase 2 Induces Interleukin-2 Production in CD4+ T Cells by Supporting Antioxidant Defense. Master's thesis, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42057407 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! ! ! ! ! ! ! ! "#$%&'()&*+!,!-).$/+*!-)%+0#+$1()2,!304.$/%(4)!()!5678!9!/+##*!:;!! <$==40%()>!?)%(4@(.&)%!6+A+)*+!! <+4!B+4)!C('!D0(%+! ?!9E+*(*!<$:'(%%+.!%4!%E+!F&/$#%;!4A! 9E+!G&0H&0.!I+.(/&#!</E44#! ()!3&0%(&#!F$#A(##'+)%!4A!%E+!J+K$(0+'+)%*! A40!%E+!6+>0++!4A!I&*%+0!4A!I+.(/&#!</(+)/+*!()!-''$)4#4>;! G&0H&0.!L)(H+0*(%;! M4*%4)N!I&**&/E$*+%%*O! I&;N!,PQR! ! ! ! ! ! ! ! ! 9E+*(*!?.H(*40S!60O!9*414*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<+4!B+4)!C('!D0(%+! "#$%&'()&*+!,!-).$/+*!-)%+0#+$1()2,!304.$/%(4)!()!5678!9!/+##*!:;!! <$==40%()>!?)%(4@(.&)%!6+A+)*+! ?:*%0&/%! I+%&:4#(/! &:)40'&#(%(+*! 4A! 9! /+##*! /4)%0(:$%+! %4! =&%E4>+)+*(*! 4A! '&);! &$%4(''$)+! .(*+&*+*N!()/#$.()>!<;*%+'(/!T$=$*!U0;%E+'&%4*$*!V<TUWO!J&=(.#;!=04#(A+0&%()>!+AA+/%40!9!/+##*! 4A%+)!$%(#(X+!>#$%&'()+!&*!&)!+)+0>;!*4$0/+!%4!'++%!E(>E!+)+0>;!.+'&).*O!"#$%&'()&*+!V"#*W!(*!%E+! -
Screening of a Composite Library of Clinically Used Drugs and Well
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: Pharmacol Res. 2016 November ; 113(Pt A): 18–37. doi:10.1016/j.phrs.2016.08.016. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer Nadiya Druzhynaa, Bartosz Szczesnya, Gabor Olaha, Katalin Módisa,b, Antonia Asimakopoulouc,d, Athanasia Pavlidoue, Petra Szoleczkya, Domokos Geröa, Kazunori Yanagia, Gabor Töröa, Isabel López-Garcíaa, Vassilios Myrianthopoulose, Emmanuel Mikrose, John R. Zatarainb, Celia Chaob, Andreas Papapetropoulosd,e, Mark R. Hellmichb,f, and Csaba Szaboa,f,* aDepartment of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA bDepartment of Surgery, The University of Texas Medical Branch, Galveston, TX, USA cLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece dCenter of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece eNational and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece fCBS Therapeutics Inc., Galveston, TX, USA Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no -
Asparaginase and Glutaminase Activities of Micro-Organisms
Journal of General MicrobiologjI (1973),76,85-99 85 Printed in Great Britain Asparaginase and Glutaminase Activities of Micro-organisms By A. IMADA, S. IGARASI, K. NAKAHAMA AND M. ISONO Microbiological Research Laboratories, Central Research Dillision, Takeda Chemical Industries, JlisB, Osaka, Japan (Received 14 September 1972; revised 28 November 1972) SUMMARY L-Asparaginase and L-glutaminase activities were detected in many micro- organisms and the distribution of these activities was found to be related to the classification of micro-organisms. Among 464 bacteria, the activities occurred in many Gram-negative bacteria and in a few Gram-positive bacteria. Most members of the family Enterobacteri- aceae possessed L-asparaginase. L-Asparaginase and L-glutaminase occurred together in a large proportion of pseudomonads. Among Gram-positive bacteria many strains of Bacillus pumilus showed strong L-asparaginase activity. Amidase activities were also observed in several strains in other families. L-Asparaginase activity was not detected in culture filtrates of 261 strains of species of the genera Streptomyces and Nocardia, but L-asparaginase and L- glutaminase were detected when these organisms were sonicated. The amidase activities in culture filtrates of 4158 fungal strains were tested. All the strains of Fusarium species formed L-asparaginase. Organisms of the genera Hjyomyces and Nectria, which are regarded as the perfect stage of the genus Fusarium, also formed L-asparaginase. Several Penicillium species formed L-asparaginase. Two organisms of the family Moniliaceae formed L-glutaminase together with L-asparaginase, and a few ascomycetous fungi formed L-asparaginase or L-glutaminase. Among I 326 yeasts, L-asparaginase or L-glutaminase occurred frequently in certain serological groups of yeasts : VI (Hansenula) group, Cryptococcus group and Rhodotorula group. -
Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: a Linkage to the Cancer Genome Atlas Project and Prediction of Survival
Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: A Linkage to The Cancer Genome Atlas Project and Prediction of Survival Friedrich-Carl von Rundstedt,* Kimal Rajapakshe,* Jing Ma, James M. Arnold, Jie Gohlke, Vasanta Putluri, Rashmi Krishnapuram, D. Badrajee Piyarathna, Yair Lotan, Daniel Godde,€ Stephan Roth, Stephan Storkel,€ Jonathan M. Levitt, George Michailidis, Arun Sreekumar, Seth P. Lerner, Cristian Coarfa† and Nagireddy Putluri† From the Scott Department of Urology (FCvR, JML, SPL), Department of Molecular and Cell Biology, Alkek Center for Molecular Discovery (KR, JMA, JG, RK, DBP, AS, CC, NP), Verna and Marrs McLean Department of Biochemistry (AS), Advanced Technology Core (VP, DBP, AS, NP) and Department of Pathology and Immunology (JML), Baylor College of Medicine, Houston and Department of Urology, University of Texas Southwestern Medical Center (YL), Dallas, Texas, Departments of Urology (FCvR, SR) and Pathology Helios Klinikum (DG, SS), Witten-Herdecke University, Wuppertal, Germany, and Department of Statistics, University of Michigan (JM, GM), Ann Arbor, Michigan Purpose: We used targeted mass spectrometry to study the metabolic fingerprint of urothelial cancer and determine whether the biochemical pathway analysis Abbreviations and Acronyms gene signature would have a predictive value in independent cohorts of patients ¼ with bladder cancer. BCa bladder cancer Materials and Methods: Pathologically evaluated, bladder derived tissues, including benign adjacent tissue from 14 patients and bladder cancer from 46, were analyzed by liquid chromatography based targeted mass spectrometry. Differen- tial metabolites associated with tumor samples in comparison to benign tissue were identified by adjusting the p values for multiple testing at a false discovery rate threshold of 15%. -
Development of a Phage Display Library for Discovery of Antigenic Brucella Peptides Jeffrey Williams Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Development of a phage display library for discovery of antigenic Brucella peptides Jeffrey Williams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Williams, Jeffrey, "Development of a phage display library for discovery of antigenic Brucella peptides" (2018). Graduate Theses and Dissertations. 16896. https://lib.dr.iastate.edu/etd/16896 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of a phage display library for discovery of antigenic Brucella peptides by Jeffrey Williams A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Microbiology Program of Study Committee: Bryan H. Bellaire, Major Professor Steven Olsen Steven Carlson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University -
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. -
Identification the Ferroptosis-Related Gene Signature in Patients with Esophageal Adenocarcinoma
Zhu et al. Cancer Cell Int (2021) 21:124 https://doi.org/10.1186/s12935-021-01821-2 Cancer Cell International PRIMARY RESEARCH Open Access Identifcation the ferroptosis-related gene signature in patients with esophageal adenocarcinoma Lei Zhu1,2,3†, Fugui Yang1,2†, Lingwei Wang1,2, Lin Dong1,2, Zhiyuan Huang1,2, Guangxue Wang2, Guohan Chen1* and Qinchuan Li1,2* Abstract Background: Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. This study aims to explore the ferroptosis-related genes (FRG) expression profles and their prognostic values in EAC. Methods: The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investi- gate the bioinformatics functions of signifcantly diferent genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and TIMER database. Finally, SDG were verifed in clinical EAC specimens and normal esophageal mucosal tissues. Results: Twenty-eight signifcantly diferent FRG were screened from 78 EAC and 9 normal tissues. Enrichment analyses showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis. -
The Fundamental Role of the P53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy
Author Manuscript Published OnlineFirst on February 3, 2012; DOI: 10.1158/1078-0432.CCR-11-3040 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy Lan Shen1,Xiang Sun2,Zhenhong Fu3,Guodong Yang1,Jianying Li1,and Libo Yao1,* 1 Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China 2 Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China 3 Department of Cardiology, The General Hospital of the People’s Liberation Army, Beijing 100853, The People’s Republic of China L. Shen, X. Sun and Z-H. Fu contributed equally to this work. * Corresponding author: Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, The People’s Republic of China. Phone: 86-29-84774513; Fax: 86-29-84773947; E-mail: [email protected]. Statement of translational relevance The tumor suppressor p53 is one of the most highly studied in the field of cancer research due to its functions on tumor cell survival and apoptosis. However, tumor metabolic reprogramming fuels cancer cell malignant growth and proliferation. In this review, we systematically document the mechanisms of p53 in tumor metabolism regulation. On this basis, we analyzed the therapeutic strategy whereby p53 helps to prevent tumor malignant metabolic phenotype, bioenergetic, and biosynthetic processes, and blocking the reprogramming of tumor metabolism will provide new strategies for tumor therapy. -
Characterization of the Scavenger Cell Proteome in Mouse and Rat Liver
Biol. Chem. 2021; 402(9): 1073–1085 Martha Paluschinski, Cheng Jun Jin, Natalia Qvartskhava, Boris Görg, Marianne Wammers, Judith Lang, Karl Lang, Gereon Poschmann, Kai Stühler and Dieter Häussinger* Characterization of the scavenger cell proteome in mouse and rat liver + https://doi.org/10.1515/hsz-2021-0123 The data suggest that the population of perivenous GS Received January 25, 2021; accepted July 4, 2021; scavenger cells is heterogeneous and not uniform as previ- published online July 30, 2021 ously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration. Abstract: The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly Keywords: glutaminase; glutamine synthetase; liver specialized hepatocyte subpopulations like glutamine syn- zonation; proteomics; scavenger cells. thetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been char- acterized extensively regarding expression of other genes and Introduction potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and There is a sophisticated structural-functional organization in perivenous GS-expressing hepatocytes from mouse and rat. the liver acinus with regard to ammonium and glutamine Apart from established markers of GS+ hepatocytes such as metabolism (Frieg et al. 2021; Gebhardt and Mecke 1983; glutamate/aspartate transporter II (GLT1) or ammonium Häussinger 1983, 1990). Periportal hepatocytes express en- transporter Rh type B (RhBG), we identified novel scavenger zymes required for urea synthesis such as the rate-controlling cell-specific proteins like basal transcription factor 3 (BTF3) enzyme carbamoylphosphate synthetase 1 (CPS1) and liver- and heat-shock protein 25 (HSP25). -
(KGA) and Its Regulation by Raf-Mek-Erk Signaling in Cancer Cell Metabolism
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism K. Thangavelua,1, Catherine Qiurong Pana,b,1, Tobias Karlbergc, Ganapathy Balajid, Mahesh Uttamchandania,d,e, Valiyaveettil Sureshd, Herwig Schülerc, Boon Chuan Lowa,b,2, and J. Sivaramana,2 Departments of aBiological Sciences and dChemistry, National University of Singapore, Singapore 117543; bMechanobiology Institute Singapore, National University of Singapore, Singapore 117411; cStructural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden; and eDefence Medical and Environmental Research Institute, DSO National Laboratories, Singapore 117510 Edited by John Kuriyan, University of California, Berkeley, CA, and approved March 22, 2012 (received for review October 11, 2011) Besides thriving on altered glucose metabolism, cancer cells un- a substrate for the ubiquitin ligase anaphase-promoting complex/ dergo glutaminolysis to meet their energy demands. As the first cyclosome (APC/C)-Cdh1, linking glutaminolysis to cell cycle enzyme in catalyzing glutaminolysis, human kidney-type glutamin- progression (12). In comparison, function and regulation of LGA is ase isoform (KGA) is becoming an attractive target for small not well studied, although it was recently shown to be linked to p53 pathway (13, 14). Although intense efforts are being made to de- molecules such as BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadia- fi fi velop a speci c KGA inhibitor such as BPTES [bis-2-(5-phenyl- zol-2-yl) ethyl sul de], although the regulatory mechanism of KGA acetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide] (15), its mechanism remains unknown.