Fatalities Due to Hurricane Katrina's Impacts In

Total Page:16

File Type:pdf, Size:1020Kb

Fatalities Due to Hurricane Katrina's Impacts In FATALITIES DUE TO HURRICANE KATRINA’S IMPACTS IN LOUISIANA A Dissertation Submitted to the Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by Ezra Boyd B.A., The University of Chicago, 1999 M.A., The University of New Orleans, 2003 August 2011 © Copyright 2011 Ezra Clay-Kelly Boyd All Rights Reserved ii Dedication This dissertation is dedicated to the people of southeast Louisiana who lost their homes and family members to the 2005 flood disasters. iii Acknowledgements I would like to express my sincerest appreciation for the support and assistance from the many people who helped make this dissertation possible. My committee members, Dr. Barry Keim, Dr. Marc Levitan, Dr. Ivor van Heerden, Dr. Craig Colten, and Dr. Troy Blanchard, all provided extremely helpful advice, insights, encouragement, and companionship. I would like to particularly acknowledge the personal sacrifices that Dr. van Heerden has had to endure because of his dedicated pursuit of the true underlying causes of this horrible disaster. During a time of tragic loss and overwhelming sorrow, Dr. Louis Cataldie and Frances Kosak, of the Louisiana State Medical Examiner’s Office, embraced my research goals, allowed me into their world, and shared their data and experiences with me. Their openness and support made this research possible. A number of my classmates and colleagues have provided invaluable advice and data. These people include DeWitt Braud, Hampton Peele, Ahmet Binselam, Stephanie Pedro, and many others. Also, I want to thank the many LSU students who assisted in the field surveys. The Louisiana Board of Regents provided the financial support for this project with additional funding from the McKnight Foundation and the Louisiana State Medical Society. Finally, Amy Thompson has been a wonderful companion and has helped me accomplish much. For five years, she patiently waited as I keep telling her “my dissertation is almost done and we’ll soon have the time to do all things we want to.” iv Table of Contents DEDICATION ………………………………………………………………………………… iii ACKNOWLEDGEMENTS …………………………………………………………………… iv ABSTRACT …………………………………………………………………………………… vi CHAPTER 1 INTRODUCTION AND PROBLEM STATEMENT ……………………………… 1 2 LITERATURE REVIEW ………………………………………………………….. 26 3 HISTORICAL GEOGRAPHY OF THE STUDY REGION …………………….... 56 4 THE HURRICANE KATRINA DISASTER IN LOUISIANA ……………………. 82 5 STUDY AREAS, BACKGROUND POPULATION, AND EXTENT OF HAZARDS …………………………………………………………………………. 117 6 FATALITIES ASSOCIATED WITH HURRICANE KATRINA’S IMPACTS ON LOUISIANA ……………………………………………………………………….. 149 7 THE FLOOD FATALITY RATE FOR ORLEANS AND ST. BERNARD PARISHES …………………………………………………………………………. 182 8 REGRESSION ANALYSIS OF THE FLOOD FATALITY RATE ……………… 203 9 CONCLUSION ...………………………………………………………………….. 222 REFERENCES ……………………………………………………………………………… 231 APPENDIX A COMPILING THE LOUISIANA KATRINA VICTIM DATABASE …….… 249 B GEOCODING HURRICANE KATRINA VICTIMS MASTER DATABASE ………………………………………………………………….. 256 C DETERMINING CIRCUMSTANCES OF DEATH …………….....………... 264 D PERMISSIONS TO USE COPYRIGHTED MATERIAL …..………………. 269 VITA …………………………………………………………………………………………. 279 v Abstract This dissertation presents a comprehensive analysis of the loss of life in Louisiana associated with Hurricane Katrina and the catastrophic failure of the federal hurricane protection system. While Louisiana officials attribute 1,464 deaths to this disaster, a Louisiana Katrina Victim Database compiled for this dissertation lists 1,575 victims whose death can be linked to circumstances related to the disaster. First, this dissertation presents a comprehensive assessment of the multiple hazards impacting a dynamic population within southeast Louisiana. This is followed by a comprehensive descriptive analysis of victims’ characteristics. Both of these assessments point to an important conclusion: circumstances matter in interpreting the observed trends in victims’ characteristics. Drawing inferences from the available data, three categories of circumstances of death are identified: (i) direct flood deaths, (ii) emergency circumstances deaths, and (iii) evacuation/displacement deaths. As a whole and within each category, age is the most important demographic attributes with nearly 60% of deceased victims over 65 or older. However, the role of other demographic attributes varies between different categories of circumstances, with flood victims being predominantly African-American males and evacuation/displacement deaths being predominantly Caucasian females. Deaths directly related to flood exposure constitutes one major class or category of victims. Using the available data, these victims are identified, and then merged with population data to calculate and map the direct flood fatality rate (FFR). The overall mortality among the flood exposed population for this event was approximately 1%, which is similar to findings for historical flood events. The FFR is then used as the dependent variable in a regression analysis meant to build upon previous research in modeling flood deaths. In a final step, a set of regressions examine the influence of (i) the flood hazard characteristics and (ii) the population vulnerability characteristics in determining the FFR. It was found that water depth and flow velocity explain much of variance in the observed FFR, with age and race also being significant. These results provide important insights into the deaths caused by this complex disaster along with the relationship between flood mortality and the characteristics of the flood and the affected population. vi Chapter 1: Introduction and Problem Statement 1.1 Introduction Hurricane Katrina and levee failures that occurred during this disaster event resulted in an unprecedented flood catastrophe for modern America. In Louisiana over 1,500 people lost their lives to the immediate and short term effects of the flood (Boyd 2006, Louisiana Department of Health and Hospitals 2006, Louisiana Family Assistance Center 2006). Furthermore Stephens et al. (2007) estimated that many thousands of deaths may be linked to the long term impacts of the flooding in New Orleans. This dissertation examines the loss-of-life associated with the impacts of Hurricane Katrina in Southeast Louisiana, with particular emphasis on the direct flood deaths that resulted from levee failure flooding in Orleans and St. Bernard parishes. Hurricane Katrina essentially consists of a meteorological event characterized by its central pressure, trajectory, and wind field. However, the Hurricane Katrina disaster largely resulted from the cascading effects of the windstorm. In particular, the sea surface response to the wind storm consisted of a storm surge that exerted damaging loads on levees around New Orleans. In turn, numerous levee failures caused catastrophic flooding of a large urban area along with an acute regional breakdown of basic public safety systems, an extended displacement emergency, and a long-term medical crisis. The Physical Event After passing over Miami as a Category 1 hurricane, Katrina entered the Gulf of Mexico as a tropical storm early on Friday, August 26, 2005. Over the next two days, Katrina would move west and strengthen. The storm crossed over the Mississippi River delta in southeastern Louisiana early Monday morning as an officially designated Category 3 storm with landfall windspeeds officially logged at 127 mph (Knabb, Rhome, and Brown 2006). The storm then continued north and made final landfall near the Louisiana-Mississippi Gulf Coast around 11:00 a.m. on Monday, August 29, 2005. This massive windstorm tore roofs off of houses, generated destructive wind borne debris, and spawned forty-three confirmed tornados (Knabb, Rhome, and Brown 2006). As an indicator of the windstorm’s extent and strength, most of Mississippi, all of southeast Louisiana, and parts of southern Alabama lost power. While awesome in its power, the worst impacts resulted not directly from the windstorm but from the sea level response to this atmospheric forcing. Storm surges consist of extreme high tides that result from surface winds and decreased air pressure associated with tropical weather systems. Generally speaking storm surges are the most lethal aspect of hurricane disasters and Katrina was no exception to this trend. Based on the limited data available, an estimated that 175 persons drowned directly due to storm surge flooding along the Mississippi1 while 45,000 1Information on deaths in Mississippi has been very limited, and with no known official break down by location or cause. The Wikipedia site on “The Effects of Hurricane Katrina on Mississippi” (http://en.wikipedia.org/wiki/Effects_of_Hurricane_Katrina_in_Mississippi, visited March 2, 2011) lists 189 deaths for Mississippi’s three coastal counties: Harrison County – 126, Hancock County – 51, and Jackson County - 12. While the majority of these victims were almost certainly surge related, some of these may have been wind deaths. The three counties just north of these, which endured just wind effects, experienced 18 deaths. 1 homes flooded there (Department of Homeland Security 2006). The surge inundated the entire Mississippi coast and peaked at 28 ft. (8.5 m) near Bay St. Louis (Knabb, Rhome, and Brown 2006). West of the Mississippi coast, much of southeast Louisiana escaped the direct impacts of the storm surge due to the system of levees, floodwalls, and
Recommended publications
  • Tropical Cyclone Report for Hurricane Ivan
    Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September.
    [Show full text]
  • Floods Caused by Tropical Systems: Potomac River at Point of Rocks, MD
    Floods Caused by Tropical Systems: Potomac River at Point of Rocks, MD Latitude: 39.274 Period of Record: 1889-Present Longitude: -77.543 Flood Stage: 16 Last Flood: 12/17/2018 Number of Floods: 121 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 9/1/1911 16.1 106,000 The first tropical cyclone of the 1911 season moved eastward across North Carolina and Virginia. 10/17/1954 21.02 130,000 Hurricane Hazel dumped 6- 10 inches of rain in the western portion of Virginia. 9/20/1945 21.98 139,000 The 1945 Southeast Florida Hurricane brought gusty winds and heavy rains to the Mid-Atlantic region. 8/20/1955 29.08 214,000 Hurricane Diane made landfall 5 days after Hurricane Connie. Hurricane Diane produced several inches of rain with locally heavier amounts of 10 to 20 inches. 9/26/1975 24.35 126,000 The remnants of Hurricane Eloise combined with a cold front and produced very heavy rainfall in the Mid- Atlantic. Washington, D.C. reported 9.08" of rainfall. Total damage for Virginia was estimated to be $17.2 million. 6/23/1972 37.43 347,000 Hurricane Agnes made landfall again over southeastern New York on June 22 and moved westward into Pennsylvania. Rainfall totals from June 20-25 range from 2-3 inches in the Upper Potomac to 18 inches near Shamokin, Pennsylvania. 10/1/1896 27.2 204,000 A hurricane knocked out communication in Richmond. Several buildings were unroofed in Petersburg. In Buena Vista, the fire department rescued people from their homes.
    [Show full text]
  • FEMA FOIA Log – 2018
    Mirandra Abrams, Monique any and all records concerning clients. Kindly provide our office with 10/4/2017 Sambursky a complete copy of clients entire file as it pertains as it pertains to Slone Sklarin Inquiry Number (b) (6) ; Voucher Number (b) (6) ; Payee Verveniotis Reference Number (b) (6) in your possession. 2017-FEFO-02138 - Masters, Mark all contract documents related to temporary staffing services 10/5/2017 contracts for emergency call center support for FEMA in the last five 2017-FEFO-02177 (5) years 2017-FEFO-02187 - (b) (6) all files, correspondence, or other records concerning yourself 10/6/2017 Dallas News Benning, Tom 1) All active FEMA contracts for manufactured housing units. 2) All 10/13/2017 active FEMA individual assistance/technical assistance contracts (IATACs). 3) All pre-event contracts for debris removal that are overseen by FEMA Region 6. 4) All pre-event contracts for housing assistance that are overseen by FEMA Region 6. 5) All noncompetitive disaster relief contracts approved by FEMA since August 14, 2017. 6) All non-local disaster relief contracts approved by FEMA since August 14, 2017, including the written justification 2017-FEFO-02214 for choosing a non-local vendor. FCI Keys, Clay a copy of any and all records related to [FEMA's] response to 10/23/2017 SEAGOVILLE hurricane Katrina, including all memoranda, communications and records of any kind and from any source from August 29, 2005 to 2012. (Date Range for Record Search: From 8/29/2005 To 2017-FEFO-02239 12/1/2012) - (b) (6) Any files related to yourself (Date Range for Record Search: From 10/24/2017 2017-FEFO-02240 1/1/2000 To 9/11/2017) - McClain, Don every individual who has requested assistance by FEMA from both 10/31/2017 Hurricane Irma and Harvey.
    [Show full text]
  • Wasn't That a Mighty Day Galveston Hurricane Song Prompt Folk Song
    Wasn’t That a Mighty Day Galveston Hurricane Song Prompt Folk song lyrics are often flawed with respect to facts. This results from generations passing along verses which, though fraught with emotion, are sometimes lacking facts. Also, needing rhyming words may inject error into historical accuracy. The purpose of this prompt is to assess the accuracy of the lyrics of a popular song about the 1900 Galveston hurricane, Wasn’t That a Mighty Day? There are at least six errors/exaggerations among the verses listed below. After reading the account below, write a one page double-spaced essay describing your findings. I remember one September, When storm winds swept the town; The high tide from the ocean, Lord, Put water all around. Chorus: Wasn't that a mighty day, A mighty day A mighty day, Great God, that morning When the storm winds swept the town! There was a sea-wall there in Galveston To keep the waters down, But the high tide from the ocean, Lord, Put water in the town. The trumpets warned the people, 'You'd better leave this place!' But they never meant to leave their homes Till death was in their face. The trains they all were loaded With people leaving town; The tracks gave way to the ocean, Lord, And the trains they went on down. Great Galveston Storm Article Paraphrased from Wikipedia Information At the end of the 19th century, the city of Galveston, Texas was a booming city with a population of approximately 38,000 residents. Its position on the natural harbor of Galveston Bay along the Gulf of Mexico made it the center of trade and the biggest city in the state of Texas.
    [Show full text]
  • National Oceanic and Atmospheric Administration (NOAA)
    1 2 3 4 National Oceanic and Atmospheric Hurricane Katrina 23–30 August 2005—Tropical How Does A Hurricane Form? L Administration (NOAA)’s GOES Cyclone Report Cold, unstable air Hurricanes are the most awesome, violent storms on Earth. They form over warm ocean waters. Actually, the term “hurricane” is used only for the large storms that form over the Atlantic Ocean or eastern Pacific Ocean. NOAA’s Geostationary Operational Environmental Satellites (GOES) continuously observe and measure Richard D. Knabb, Jamie R. Rhome, and Daniel P. Brown meteorological phenomena in real time, providing the meteorological community and the atmospheric scien- National Hurricane Center, 20 December 2005 tist observational and measurement data of the Western Hemisphere. Forecasting the approach of severe The generic, scientific term for storms, the GOES system of weather satellites provides timely environmental information to meteorologists Katrina was an extraordinarily powerful and deadly hurricane that carved a wide swath of catastrophic these storms, wherever they Warm, humid air and their audiences alike—graphically displaying the intensity, path, and size of storms. In addition to short- damage and inflicted large loss of life. It was the costliest and one of the five deadliest hurricanes to ever occur, is tropical cyclone. term weather forecasting, GOES data is used to support atmospheric science research, numerical weather strike the United States. Katrina first caused fatalities and damage in southern Florida as a Category 1 Depending on where in the prediction models, and environmental sensor design and development. hurricane on the Saffir-Simpson Hurricane Scale. After reaching Category 5 intensity over the central Gulf of world they are born, other H Typhoons Warm Mexico, Katrina weakened to Category 3 before making landfall on the northern Gulf coast.
    [Show full text]
  • 10R.3 the Tornado Outbreak Across the North Florida Panhandle in Association with Hurricane Ivan
    10R.3 The Tornado Outbreak across the North Florida Panhandle in association with Hurricane Ivan Andrew I. Watson* Michael A. Jamski T.J. Turnage NOAA/National Weather Service Tallahassee, Florida Joshua R.Bowen Meteorology Department Florida State University Tallahassee, Florida Jason C. Kelley WJHG-TV Panama City, Florida 1. INTRODUCTION their mobile homes were destroyed near Blountstown, Florida. Hurricane Ivan made landfall early on the morning of 16 September 2004, just west of Overall, there were 24 tornadoes reported Gulf Shores, Alabama as a category 3 across the National Weather Service (NWS) hurricane on the Saffir-Simpson Hurricane Tallahassee forecast area. The office issued Scale. Approximately 117 tornadoes were 130 tornado warnings from the afternoon of 15 reported associated with Ivan across the September until just after daybreak on 16 southeast United States. Eight people were September. killed and 17 were injured by tornadoes (Storm Data 2004; Stewart 2004). The most The paper examines the convective cells significant tornadoes occurred as hurricane within the rain bands of hurricane Ivan, which Ivan approached the Florida Gulf coast on the produced these tornadoes across the Florida afternoon and evening of 15 September. Panhandle, Big Bend, and southwest Georgia. The structure of the tornadic and non-tornadic The intense outer rain bands of Ivan supercells is examined for clues on how to produced numerous supercells over portions better warn for these types of storms. This of the Florida Panhandle, Big Bend, southwest study will focus on the short-term predictability Georgia, and Gulf coastal waters. In turn, of these dangerous storms, and will these supercells spawned dozens of investigate the problem of how to reduce the tornadoes.
    [Show full text]
  • Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events
    Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events Final Report December 22, 2015 Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events BACKGROUND A “classic late-season…extraordinarily large hurricane,” 1 Sandy was the 18th named tropical cyclone of the 2012 Atlantic hurricane season. It made landfall along the mid-Atlantic coast near Atlantic City, NJ about 6:30 pm on October 29, 2012 as a Category 1 hurricane with 80- mph maximum sustained winds. But due to its extensive breadth (winds above 40 mph (tropical storm force) stretched 900 miles), Sandy’s real damage was done by a calamitous storm surge that merged with a high tide to produce a storm surge, primarily pounding the New Jersey, New York, and Connecticut coastlines (Figure 1). The United States Geological Survey measured water levels on Staten Island, New York at almost eight feet above ground level. Even after the storm moved on, it impacted inland states, including Ohio, West Virginia, and Indiana, with high winds, soaking rains, and even heavy snow in the Appalachians. 2,3 Very High: > 10,000 people exposed to surge High: 500 – 10,000 people exposed to surge OR > $100 million in wind damage OR > 8” rain Moderate: 100 – 500 people exposed to surge OR $10 - $100 million in wind damage OR 4” - 8” rain Low: no surge impacts OR < $10 million in wind damage OR < 4” rain Figure 1. 2 FEMA Hurricane Sandy Impact Analysis The consequences of the storm’s destructive power were significant.
    [Show full text]
  • Hurricane Irma Storm Review
    Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds.
    [Show full text]
  • Background Hurricane Katrina
    PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure.
    [Show full text]
  • A FAILURE of INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina
    A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina U.S. House of Representatives 4 A FAILURE OF INITIATIVE A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Union Calendar No. 00 109th Congress Report 2nd Session 000-000 A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Report by the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Available via the World Wide Web: http://www.gpoacess.gov/congress/index.html February 15, 2006. — Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U. S. GOVERNMEN T PRINTING OFFICE Keeping America Informed I www.gpo.gov WASHINGTON 2 0 0 6 23950 PDF For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 COVER PHOTO: FEMA, BACKGROUND PHOTO: NASA SELECT BIPARTISAN COMMITTEE TO INVESTIGATE THE PREPARATION FOR AND RESPONSE TO HURRICANE KATRINA TOM DAVIS, (VA) Chairman HAROLD ROGERS (KY) CHRISTOPHER SHAYS (CT) HENRY BONILLA (TX) STEVE BUYER (IN) SUE MYRICK (NC) MAC THORNBERRY (TX) KAY GRANGER (TX) CHARLES W. “CHIP” PICKERING (MS) BILL SHUSTER (PA) JEFF MILLER (FL) Members who participated at the invitation of the Select Committee CHARLIE MELANCON (LA) GENE TAYLOR (MS) WILLIAM J.
    [Show full text]
  • Blackest Night / Brightest Day Jumpchain What Is Death in a World
    Blackest Night / Brightest Day Jumpchain What is death in a world like this one? Great heroes and villains alike have tasted the sweet kiss of oblivion, both deserving and not. Yet death has also been defied, and many more have returned to life through circumstance or miracle. Two heroes in particular – Hal Jordan, a Green Lantern of Earth, and Barry Allen, The Flash, both ponder this together as they talk over the gravestone of Bruce Wayne. Both had died and returned to life before. And soon, many more will return as well...but not in a way they or anyone else would expect. Recently, the Green Lantern Corps, a peacekeeping organization created by the self-touted Guardians of the Universe, have been at war with the Sinestro Corps founded by its namesake rogue who fell from grace in the past. As this conflict raged on, other Lantern Corps were discovered or created as all seven colors on the Emotional Spectrum were revealed to the galaxy. But as this conflict and chaos rages on, a prophecy is fulfilled and as the various colors come into battle with each other, a darker force awakens. The Entity of Death, Nekron, acting through the villain Death’s Hand, has prepared to unleash a plague on the entire universe. One that will see the billions of dead across all of creation rise and seek to ravage the living, before extinguishing all life entirely within the Blackest Night. Just as this conversation began, you appear. You are a new or veteran member of one of the existing Lantern Corps...unless you are a Black Lantern, in which you rise from death not long after as the crisis of the Blackest Night begins.
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]