Water Absorption and Dormancy-Breaking Requirements of Physically Dormant Seeds of Schizolobium Parahyba (Fabaceae – Caesalpinioideae)

Total Page:16

File Type:pdf, Size:1020Kb

Water Absorption and Dormancy-Breaking Requirements of Physically Dormant Seeds of Schizolobium Parahyba (Fabaceae – Caesalpinioideae) Seed Science Research, page 1 of 8 doi:10.1017/S0960258512000013 q Cambridge University Press 2012 Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae – Caesalpinioideae) Thaysi Ventura de Souza, Caroline Heinig Voltolini, Marisa Santos and Maria Terezinha Silveira Paulilo* Departamento de Botaˆnica, Universidade Federal de Santa Catarina, Floriano´polis 88040-900, Brazil (Received 14 July 2011; accepted after revision 18 January 2012) Abstract seeds have been a source of controversy (Fenner and Thompson, 2005; Finch-Savage and Leubner-Metzger, Physical dormancy refers to seeds that are water 2006). A definition of dormancy that has been impermeable. Within the Fabaceae, the structure proposed recently is that dormancy is an innate seed associated with the breaking of dormancy is usually property determined by genetics that defines the the lens. This study verified the role of the lens in environmental conditions in which the seed is able to physical dormancy of seeds of Schizolobium para- germinate (Finch-Savage and Leubner-Metzger, 2006). hyba, a gap species of Fabaceae from the Atlantic Five classes of seed dormancy are recognized, and one Forest of Brazil. The lens in S. parahyba seeds of them is physical dormancy (Baskin and Baskin, appeared as a subtle depression near the hilum and 2004), which is caused by a seed (or fruit) coat that opposite the micropyle. After treatment of the seeds prevents absorption of water (Morrison et al., 1998; with hot water, the lens detached from the coat. Baskin and Baskin, 2001; Smith et al., 2002). Blocking water from contacting the lens inhibited water Physical dormancy is known to occur in 17 families absorption in hot-water-treated seeds. High constant (308C) and alternating (20/308C) temperatures pro- of angiosperms, including the Fabaceae (Baskin and moted the breaking of physical dormancy and Baskin, 2000; Funes and Venier, 2006), where it occurs in germination in non-scarified seeds. Maximum percen- many species. Water-impermeability of the coat (or in tage of germination occurred earlier for seeds some species the fruit coat) is caused by the presence of incubated at 20/308C than for those incubated at one or more layers of elongated, lignified Malpighian 308C. Seeds with a blocked lens did not germinate at cells that are tightly packed together and impregnated alternating or high temperatures. This study suggests with water-repellant chemicals (Morrison et al., 1998; that alternating temperatures are probably the cause Baskin and Baskin, 2001; Smith et al., 2002; Baskin, of physical dormancy break of seeds of S. parahyba in 2003). Under natural conditions, it has been suggested gaps in the forest. that physical dormancy is not broken by seeds passing through the digestive tracts of an animal or by cracks in the coat caused by animals (Baskin and Baskin, 2001; Keywords: Fabaceae, lens, physical dormancy, water Fenner and Thompson, 2005). One characteristic that uptake suggests this hypothesis is correct is the presence of a specialized anatomical region in physically dormant seeds that develops an opening where water can enter Introduction the seeds (Baskin and Baskin, 2001). Several types of specialized structures (‘water gaps’) have been found in For plants, it is important that seed germination occurs 12 of the 17 families that have physical dormancy; for in the right place and at the right time, and, for this example, the carpellary micropyle in Anacardiaceae; reason, most species have mechanisms that delay the bixoide chalazal plug in Bixaceae, Cistaceae, germination, such as seed dormancy (Fenner and Cochlospermaceae, Dipterocarpaceae and Sarcolaena- Thompson, 2005). The definitions of dormancy in ceae; the imbibition lid in Cannaceae; the chalazal plug in Malvaceae; the lens and hilar slit in Fabaceae (Baskin et al., 2000) and the micropyle-water gap complex in *Correspondence Geraniaceae (Gama-Arachchige et al., 2011). However, Email: [email protected] in some Fabaceae (subfamilies Caesalpinioideae and 2 T.V. de Souza et al. Mimosoideae) the lens is absent (Gunn, 1984, 1991) and 1981; Matheus and Lopes, 2007), the seed coats were after treating some legume seeds to break physical made impermeable in four ways: (1) extrahilar region dormancy, cracks develop in the extrahilar region blocked with paraffin; (2) hilar region blocked with or in the hilum that permit entrance of water into the paraffin; (3) hilum blocked with Super Bonderw glue seeds (Hu et al., 2008, 2009). (Henkel, Jundiai, Brazil); and (4) lens blocked with Several artificial techniques are used to break physical Super Bonderw glue. A control group was of non- dormancy in seeds, including mechanical, thermal and dormant, non-blocked seeds. Twenty seeds were chemical scarification, enzymes, dry storage, percussion, utilized for each treatment. Seeds were placed in low temperatures, radiation and high atmospheric transparent plastic boxes of 11 £ 11 £ 3.5 cm on two pressures (Baskin and Baskin, 2001). Studies on seeds layers of filter paper (Whatman No. 1, Whatman with physical dormancy have contributed greatly to International Ltd, Maidstone, England) with 10 ml of our understanding of water gaps, the effects of various distilled water. The boxes were stored at 208C with a factors (e.g. drying, heating, low temperatures and photoperiod of 12 h/12 h. Incubated seeds were alternating temperatures) in breaking physical dor- counted at intervals of 2 or 3 d for 19 d, during which mancy under natural conditions, and the rate and path time germination was observed. of water entrance into seeds that have become permeable (Baskin and Baskin, 2001). Under natural conditions, it is Analysis of seed coat features known that temperature is an important environmental factor for breaking physical dormancy in seeds (Baskin The hilar regions of five intact and five thermally and Baskin, 2001). Va´zquez-Yanez and Orozco-Segovia scarified seeds were fixed in 2.5% glutaraldehyde (1982) verified that the highly fluctuating temperature in a 0.1 M sodium phosphate buffer at pH 7.2 and that occurs in gaps, but not in forest understorey, breaks dehydrated in a graded ethanol series. Sections of physical dormancy in gap forest species. 40 mm thickness were cut using a sliding microtome. Schizolobium parahyba (Fabaceae–Caesalpinioideae) Histochemical tests were made utilizing Sudan IV for is a pioneer woody species from the Atlantic Forest of suberin, cutin, oils and waxes; acid phloroglucinol Brazil that occurs mostly in gaps and along forest and iron chloride for lignin (Costa, 1982); and toluidine borders, with physically dormant seeds and anemo- blue for polychromatic reactions to lignin and cellulose choric seed dispersal (Carvalho, 2003). The imperme- (O’Brien et al., 1965). Images were taken with a digital able seed coat of this species can be broken artificially camera connected to an optical microscope (Leica MPS by boiling water or mechanical scarification (Caˆndido 30 DMLS). For scanning electron microscopy (SEM) et al., 1981; Freire et al., 2007; Matheus and Lopes, 2007). analyses, the dehydrated pieces of five intact and five The aim of this work was to study the seeds of scarified seeds were immersed in hexamethyldesila- S. parahyba with the objectives of: (1) locating the water sane (HMDS) for 30 min, as a substitute for critical gap in the seeds; (2) describing the anatomical point drying (Bozzola and Russell, 1991) and then structure of the water gap; and (3) testing the effect mounted on aluminium stubs and blocked with a of alternating temperatures on breaking the physical gold layer (40 nm thick). The pieces were viewed using dormancy of the seeds. a Jeol JSM 6390 LV scanning electron microscope. To verify the presence of callose in the seeds, sections of non-fixed samples of the hilar and extrahilar Materials and methods regions of five intact seeds were immersed in 0.05% aniline blue with a 0.1 M potassium phosphate buffer Seed collection at pH 8.3 (Ruzin, 1951). As a control, some sections were immersed only in the potassium phosphate buffer. The Seeds of S. parahyba, which remain enclosed in the sections were observed using an Olympus BX41 similar-shaped papery envelope of endocarp resembling microscope, with a mercury vapour lamp (HBO 100) a wing, were collected from the ground soon after wind and a blue epifluorescence filter (UMWU2), at 330– dispersal, during spring, in a section of Atlantic Forest 385 nm excitation and 420 nm emission wavelengths. located in the municipality of Florianopolis, Santa Images were taken with a Q-imaging digital camera 0 00 0 00 Catarina, Brazil (27835 36 S, 48835 60 W). The endocarp (3.3 mpixel QColor3C) and the software Q-captures was removed, and the seeds were stored in plastic bottles Pro 5.1 (Q Images, Surrey, British Columbia, Canada). at room temperature until they were used. Effect of alternating temperatures on germination Location of the water entrance region and dormancy break After artificially breaking dormancy of the seeds by Seeds were immersed in 5% sodium hypochlorite for placing them in water at 988C for 1 min (Caˆndido et al., 5 min and then washed three times in distilled water. Physical dormancy in seeds of Schizolobium 3 For some of the seeds, the region with the lens was with the blocked lens was only 1.0%. However, 50% of covered using Super Bondw glue, which made the the scarified seeds with only the hilum blocked seeds impermeable. Then the seeds were placed in germinated (Fig. 1). The germination levels at the last transparent plastic boxes on a 5 cm autoclaved layer of day of incubation were similar for seeds blocked in the sand moistened with distilled water. The boxes were lens and in the hilar regions, but significantly different stored at 208C, 308C and a 12 h/12 h alternating for scarified seeds and scarified seeds blocked in the temperature regime of 20/308C with a photoperiod of extrahilar region and hilum (P # 0.05).
Recommended publications
  • Phytotaxa, Zamia Incognita (Zamiaceae): the Exciting Discovery of a New Gymnosperm
    Phytotaxa 2: 29–34 (2009) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2009 • Magnolia Press ISSN 1179-3163 (online edition) Zamia incognita (Zamiaceae): the exciting discovery of a new gymnosperm from Colombia ANDERS J. LINDSTRÖM1 & ÁLVARO IDÁRRAGA2 1Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250 Thailand 2Universidad de Antioquia, Herbario Universidad de Antioquia (HUA), Medellín, Colombia Abstract Colombia is home to the majority of known South American species of Zamia (Zamiaceae). Although Zamia is now the only recognised genus of extant Cycadales in South America, it shows some complex ecological adaptations that have resulted in several evolutionarily divergent sections within the genus. The recent publication of Flora de Colombia listed 16 species, of which seven are endemic and five were newly described in the very same treatment. Although this treatment was current at the time of publication, recent collections and additional material of little-known species have made an update and further clarification necessary. A new species, Zamia incognita is described here and its relationships are discussed. Key words: Colombia, cycads, gymnosperms, Zamia Introduction The classification of Zamia Linnaeus (1763: 1659), a genus of about 57 species of mainly South and Central American cycads, is still incomplete with new species still to be discovered and described. The relationships are not very well-studied and there are few classifications at the subgeneric level (Schuster, 1932). Most species have been described individually by various authors and not as part of a larger taxonomic treatment or revision. Because of the inaccessibility of many habitats, there are very few specimens of South American species.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Botryosphaeriaceae Associated with Die-Back of Schizolobium Parahyba Trees In
    Botryosphaeriaceae associated with die-back of Schizolobium parahyba trees in South Africa and Ecuador J. W. M. Mehl1,3, B. Slippers2, J. Roux1 and M. J. Wingfield1 1Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 2Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 3E-mail: [email protected] (for correspondence) Summary Die-back of Schizolobium parahyba var. amazonicum is a serious problem in plantations of these trees in Ecuador. Similar symptoms have also been observed on trees of this species in various parts of South Africa. The most common fungi isolated from disease symptoms on S. parahyba var. amazonicum in both locations were species of the Botryosphaeriaceae. The aim of this study was to identify these fungi from both Ecuador and South Africa, and to test their pathogenicity in greenhouse and field trials. Isolates obtained were grouped based on culture morphology and identified using comparisons of DNA sequence data for the Internal Transcribed Spacer (ITS) and Translation Elongation Factor 1α (TEF-1α) gene regions. The β-tubulin-2 (BT2) locus was also sequenced for some isolates where identification was difficult. Three greenhouse trials were conducted in South Africa along with a field trial in Ecuador. Neofusicoccum parvum was obtained from trees in both areas and was the dominant taxon in South Africa. Lasiodiplodia theobromae was the dominant taxon in Ecuador, probably due to the subtropical climate in the area. Isolates of N. vitifusiforme (from South Africa only), N.
    [Show full text]
  • Livro-Inpp.Pdf
    GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).
    [Show full text]
  • PRE-GERMINATION TREATMENTS of PARICÁ (Schizolobium Amazonicum) SEEDS
    1090 Bioscience Journal Original Article PRE-GERMINATION TREATMENTS OF PARICÁ (Schizolobium amazonicum) SEEDS TRATAMENTOS PRÉ-GERMINATIVOS EM SEMENTES DE PARICÁ (Schizolobium amazonicum) Estefânia Martins BARDIVIESSO1; Thiago Barbosa BATISTA1; Flávio Ferreira da Silva BINOTTI2; Edilson COSTA2; Tiago Alexandre da SILVA1; Natália de Brito Lima LANNA1; Ana Carolina Picinini PETRONILIO1 1. Paulista State University “Júlio de Mesquita Filho” – College of Agricultural Science, Department of Crop Science, Botucatu, SP, Brazil. [email protected]; 2. Mato Grosso do Sul State University, Cassilândia, MS, Brazil. ABSTRACT: Paricá seeds have dormancy and, even after mechanical scarification, these seeds show slow and uneven germination. Pre-germination treatments can be used to increase seed germination performance. Thus, the aimed to evaluate the physiological potential and initial growth of paricá seeds after pre-germination treatments, using different substances as plant regulators and nutrients, in addition to mechanical scarification. The experimental design was completely randomized, in a 2x7 factorial scheme, consisting of the following pre-germination treatments: mechanical scarification (10% and 50% of the seed coat) and seed pre-soaking [control-water, KNO3 0.2%, Ca(NO3)2 0.2%, gibberellin 0.02%, cytokinin 0.02%, and mixture of gibberellin + cytokinin (1:1)] besides a control group without pre-soaking, with four replicates. The study evaluated germination and emergence rates, germination and emergence speed indices, collar diameter, plant height, seedling dry mass, hypocotyl and seedling length, and electrical conductivity. It was observed that pre-soaking the seeds in gibberellin after mechanical scarification at 50% as a pre-germination treatment resulted in seeds with higher vigor expression and greater initial seedling growth.
    [Show full text]
  • The Flower Flies and the Unknown Diversity of Drosophilidae (Diptera): a Biodiversity Inventory in the Brazilian Fauna
    bioRxiv preprint doi: https://doi.org/10.1101/402834; this version posted August 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna Hermes J. Schmitz1 and Vera L. S. Valente2 1 Universidade Federal da Integração-Latino-Americana, Foz do Iguaçu, PR, Brazil; [email protected] 2 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; [email protected] Abstract Diptera is a megadiverse order, reaching its peak of diversity in Neotropics, although our knowledge of dipteran fauna of this region is grossly deficient. This applies even for the most studied families, as Drosophilidae. Despite its position of evidence, most aspects of the biology of these insects are still poorly understood, especially those linked to natural communities. Field studies on drosophilids are highly biased to fruit-breeders species. Flower-breeding drosophilids, however, are worldwide distributed, especially in tropical regions, although being mostly neglected. The present paper shows results of a biodiversity inventory of flower-breeding drosophilids carried out in Brazil, based on samples of 125 plant species, from 47 families. Drosophilids were found in flowers of 56 plant species, of 18 families. The fauna discovered showed to be highly unknown, comprising 28 species, 12 of them (>40%) still undescribed.
    [Show full text]
  • Notas Científicas Occurrence of Quesada Gigas on Schizolobium Amazonicum Trees in Maranhão and Pará States, Brazil
    Occurrence of Quesada gigas on Schizolobium amazonicum 943 Notas Científicas Occurrence of Quesada gigas on Schizolobium amazonicum trees in Maranhão and Pará States, Brazil José Cola Zanuncio(1), Fabrício Fagundes Pereira(1), Teresinha Vinha Zanuncio(1), Nilza Maria Martinelli(2), Tobias Baruc Moreira Pinon(1) and Edylene Marota Guimarães(1) (1)Universidade Federal de Viçosa, Dep. de Biologia Animal/BIoagro, Avenida P.H. Rolfs, s/no, CEP 36571-000 Viçosa, MG. E-mail: [email protected], [email protected]. (2)Universidade Estadual Paulista, Dep. de Fitossanidade, Via de Acesso Paulo Donato Castellane, s/no, CEP 14884-900 Jaboticabal, SP. E-mail: [email protected] Abstract – An infestation of Quesada gigas Olivier (Hemiptera: Cicadidae) on “paricá” Schizolobium amazonicum (Huber) Ducken (Fabales: Fabaceae) was reported in the Municipalities of Itinga, Maranhão State and Paragominas, Pará State. Nymphs of this insect on roots and adults and exuvias on trunks of the plant were observed. Exit holes of nymphs in the soil were also observed. The occurrence of Q. gigas on S. amazonicum shows the damage potential of this species and the necessity of developing integrated management programs for species of this group, specially in reforested areas with “paricá”. Index terms: Cicadidae, cicada, reforestation, soil pest, paricá. Ocorrência de Quesada gigas em Schizolobium amazonicum em municípios do Maranhão e do Pará Resumo – Há relatos sobre a infestação de Quesada gigas Olivier (Hemiptera: Cicadidae) em paricá Schizolobium amazonicum (Huber) Ducken (Fabales: Fabaceae) nos municípios de Itinga, Estado do Maranhão e Paragominas, Estado do Pará. Observaram-se ninfas nas raízes e adultos e exúvias nos troncos da planta.
    [Show full text]
  • Floristic Composition and Edge-Induced Homogenization in Tree Communities in the Fragmented Atlantic Rainforest of Rio De Janeiro, Brazil
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (2): 852-876, 2016 Research Article Floristic composition and edge-induced homogenization in tree communities in the fragmented Atlantic rainforest of Rio de Janeiro, Brazil. Oliver Thier1* and Jens Wesenberg2 1 University of Leipzig, Institute for Biology I, Systematic Botany and Functional Biodiversity, Johannisallee 21, 04103 Leipzig, Germany. 2 Senckenberg Museum of Natural History Görlitz, Botany Department, Am Museum 1, 02826 Görlitz, Germany. * Corresponding author. Email: [email protected] Abstract This study investigates the changes of tree species composition and diversity along the gradient from fragment edge to interior, and between edge and interior habitats, on a regional scale, in nine Atlantic forest fragments (6–120 ha), in southeastern Brazil. A total of 1980 trees (dbh ≥ 5 cm) comprising 252 species, 156 genera and 57 families were surveyed using the point-centered quarter method. From the fragment edge towards the interior the proportion of shade-tolerant trees increased continuously. The majority of all trees within the first 100 m from the edge belonged to the pioneer-guild. Floristic dissimilarity was found to be higher among interior habitats of different fragments than among the corresponding edge areas or among different small fragments. Species diversity increased along the edge-interior gradient 1.5 times within the first 250 m. Our results support previous findings that the establishment of edge-affected habitats leads to tree species impoverishment and homogenization via the dominance and proliferation of pioneer species in the forest edges of severely fragmented tropical landscapes. We argue that conservation strategies which include the creation of buffer zones between forest edges and the matrix will be more efficient than the establishment of narrow corridors to connect fragments and protected areas.
    [Show full text]
  • Schizolobium Parahyba, Mimosa
    t edia ion & em B r i o o i d B e f g o r a Journal of l d a de Oliveira Gonçalves et al., J Bioremed Biodeg 2012, S7 a n r t i o u n o DOI: 10.4172/2155-6199.S7-004 J ISSN: 2155-6199 Bior emediation & Biodegradation Research Article OpOpenen Access Access Tolerance of Tree Reforestation Species (Schizolobium parahyba, Mimosa scabrella and Enterolobium contortisiliquum) to Gasoline and Diesel Phytotoxicity Assays Priscila Jane Romano de Oliveira Gonçalves1, Lucas Coelho Vieira2, Alexandre Verzani Nogueira2, Henry Xavier Corseuil2 and Melissa Paola Mezzari2* 1Department of Microbiology, Center of Biological Sciences, Laboratory of Microbial Ecology, Universidade Estadual de Londrina, Londrina, Parana 86051-990, Brazil 2Universidade Federal de Santa Catarina, Campus Universitário Trindade, C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil Abstract Schizolobium parahyba (tower tree), Mimosa scabrella (bracatinga) and Enterolobium contortisiliquum (earpod tree) are Brazilian native trees used for reforestation of degraded areas. In order to evaluate their probable success on phytoremediation of degraded areas contaminated with petroleum derived compounds, a simple short-term acute toxicity assay with diesel and gasoline was performed. Plants were germinated in contaminant-free conditions and adapted in hydroponic solution prior to the one-week hydroponic toxicity test, which was supplemented with diesel at 0, 8, 16, 33 and 66 gL-1 and gasoline at 0, 0.7, 1.5, 3 and 6 gL-1. Parameters examined were fresh weight, root and shoot length, dry biomass and transpiration rate. Phytotoxic effects on transpiration analysis from gasoline were less severe than diesel.
    [Show full text]
  • Floral Preferences and Climate Influence in Nectar and Pollen
    November - December 2010 879 ECOLOGY, BEHAVIOR AND BIONOMICS Floral Preferences and Climate Infl uence in Nectar and Pollen Foraging by Melipona rufi ventris Lepeletier (Hymenoptera: Meliponini) in Ubatuba, São Paulo State, Brazil ADRIANA DE O FIDALGO1, ASTRID DE M P KLEINERT2 1Seção de Sementes e Melhoramento Vegetal, Instituto de Botânica, Av Miguel Estéfano, 3687, 04301-012 São Paulo, SP, Brasil; aofi [email protected] 2Lab de Abelhas, Depto de Ecologia, Instituto de Biociências, Univ de São Paulo, Rua do Matão, tr. 14, 321, 05508-900 São Paulo, SP, Brasil; [email protected] Edited by Kleber Del Claro – UFU Neotropical Entomology 39(6):879-884 (2010) ABSTRACT - We describe the environment effects on the amount and quality of resources collected by Melipona rufi ventris Lepeletier in the Atlantic Forest at Ubatuba city, São Paulo state, Brazil (44o 48’W, 23o 22’S). Bees carrying pollen and/or nectar were captured at nest entrances during 5 min every hour, from sunrise to sunset, once a month. Pollen loads were counted and saved for acetolysis. Nectar was collected, the volume was determined and the total dissolved solids were determined by refractometer. Air temperature, relative humidity and light intensity were also registered. The number of pollen loads reached its maximum value between 70% and 90% of relative humidity and 18 oC and 23oC; for nectar loads this range was broader, 50-90% and 20-30ºC. The number of pollen loads increased as relative humidity rose (rs = 0.401; P < 0.01) and high temperatures had a strong negative infl uence on the number of pollen loads collected (rs = -0.228; P < 0.01).
    [Show full text]
  • Redalyc.Floral Sources to Tetragonisca Angustula
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Almeida Braga, Juliana; Oliveira Sales, Érika; Soares Neto, João; Menezes Conde, Marilena; Barth, Ortrud Monika; Lorenzon, Maria Cristina Floral sources to Tetragonisca angustula (Hymenoptera: Apidae) and their pollen morphology in a Southeastern Brazilian Atlantic Forest Revista de Biología Tropical, vol. 60, núm. 4, diciembre, 2012, pp. 1491-1501 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44925088039 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Floral sources to Tetragonisca angustula (Hymenoptera: Apidae) and their pollen morphology in a Southeastern Brazilian Atlantic Forest Juliana Almeida Braga1, Érika Oliveira Sales2, João Soares Neto1, Marilena Menezes Conde3, Ortrud Monika Barth4 & Maria Cristina Lorenzon1 1. Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, BR 465, km 07, CEP 24800-000, Seropédica, RJ, Brasil; [email protected], [email protected], [email protected] 2. Laboratório de Palinologia, Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; [email protected] 3. Departamento de Botânica, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, BR 465, km 07, CEP 24800-000, Seropédica, RJ, Brasil; [email protected] 4. Instituto Oswaldo Cruz, Departamento de Virologia, Av. Brasil, 4365, CEP 21045-900, Rio de Janeiro, RJ, Brasil; [email protected] Received 31-VIII-2011.
    [Show full text]
  • Periodic Activity Report ______
    SEEDSOURCE – 003708 – Second Periodic Activity Report ___________________________________________________________________________________________ SEEDSOURCE ‘Developing best practice for seed sourcing of planted and natural regeneration in the neotropics’ SIXTH FRAMEWORK PROGRAMME Call identifier: FP6-2002-INCO-DEV-1 PRIORITY A.2.1. Managing humid and semi-humid ecosystems SPECIFIC TARGETED RESEARCH PROJECT Second Reporting Period Periodic Activity Report 01/05/06 – 30/04/2007 Proposal/Contract no.: 003708 Project coordinator: Stephen Cavers Coordinating Institution: CEH Project start date: 01/05/2006 Duration: 4 years 1 SEEDSOURCE – 003708 – Second Periodic Activity Report ___________________________________________________________________________________________ Executive Summary - project description The aim of SEEDSOURCE is to provide best practice policies for sourcing tree germplasm for use within a range of degraded landscapes to ensure the use of best adapted material, that maximises production, without eroding genetic and ecosystem diversity and long term adaptive potential. Supply of appropriate germplasm is a critical factor for reforestation programmes. Use of inappropriately sourced material (due to lack of knowledge or availability) can lead to ecological and/or commercial failures, as trees die or fail to meet the particular objectives of a reforestation or restoration project. With recent interest in the conservation and restoration of native habitat, there is a growing trend towards planting trees with wider objectives than simply maximising production. Germplasm selection for production forestry is generally based on growth, form and quality criteria. In contrast, planting for ecological restoration requires an emphasis on different traits such as reproductive vigour, seed and seedling survival, and ability to compete with other species. Considerations of sustainability, ecological restoration and conservation of biodiversity also lead to promotion of ‘local’ seed sources for planting.
    [Show full text]