U.S. Department of Energy Hydrogen Program Plan

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Department of Energy Hydrogen Program Plan Department of Energy Hydrogen Program Plan i This report is being disseminated by the Department of Energy. As such, the document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report does not constitute “influential” information, as that term is defined in DOE’s information quality guidelines or the Office of Management and Budget's Information Quality Bulletin for Peer Review (Bulletin), the study was reviewed internally prior to publication. NOTICE Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. Department of Energy Hydrogen Program Plan ii To Our Stakeholders The U.S. economy is becoming more agile and innovative in response to continuing economic and environmental challenges and to the regional demands for clean electricity, fuels, and other products. At the same time, the past decade has demonstrated the need for an all-of-the-above strategy to support the U.S. economy and energy security, and to protect the environment. Hydrogen is a versatile fuel that offers a path to sustainable long-term economic growth. It can add value to multiple sectors in the economy and support America’s ongoing manufacturing renaissance. It can serve as a sustainable fuel for transportation and as input to produce electricity and heat for homes. And, carbon-free hydrogen could even be exported to markets that are looking for carbon-free energy. But realizing the true potential for hydrogen requires a commitment to continued research and development as well as ramping up demonstrations and deployments with the private sector to achieve scale. Unlike other fuels, hydrogen requires more integration of the fossil, nuclear, and renewable energy systems, and it will take an integrated approach from all energy sectors to realize the full potential and benefits of hydrogen. To meet this challenge, the U.S. Department of Energy (DOE) has developed a Hydrogen Program Plan. This Plan provides a strategic framework that incorporates the research, development, and demonstration efforts of the Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Nuclear Energy, Electricity, Science, and ARPA-E to advance the production, transport, storage, and use of hydrogen across different sectors of the economy. This comprehensive document represents DOE’s commitment to develop the technologies that can enable a hydrogen transition in the United States. It also underscores the importance of collaboration both within DOE and with our stakeholders in industry, academia, and the states to achieve that goal. We hope you will find the Hydrogen Program Plan valuable and constructive, and we look forward to working with you to unlock and expand the remarkable potential and benefits of hydrogen. Mark W. Menezes Deputy Secretary of Energy Daniel R Simmons Steven Winberg Assistant Secretary, Energy Efficiency Assistant Secretary, Fossil Energy and Renewable Energy Rita Baranwal Patricia Hoffman Assistant Secretary, Nuclear Energy Acting Assistant Secretary, Office of Electricity Chris Fall S. Lane Genatowski Director, Office of Science Director, Advanced Research Projects Agency–Energy Department of Energy Hydrogen Program Plan iii TABLE OF CONTENTS To Our Stakeholders ......................................................................................................................................................... ii Preface – About this Document ....................................................................................................................................... 1 1 Introduction ................................................................................................................................................................. 3 Hydrogen Overview—Benefits and Uses ........................................................................................................................................................ 4 Progress and Needs ....................................................................................................................................................................................... 5 2 DOE Hydrogen Program ............................................................................................................................................... 8 Program Mission ............................................................................................................................................................................................ 8 Hydrogen at Scale—A Guiding Framework .................................................................................................................................................... 8 Program Strategy .......................................................................................................................................................................................... 14 3 Technology Focus Areas & RD&D Thrusts ....................................................................................................................... 15 Hydrogen Production .................................................................................................................................................................................... 15 Fossil Resources ...................................................................................................................................................................................... 16 Biomass and Waste-Stream Resources ................................................................................................................................................... 16 Water-Splitting Technologies ................................................................................................................................................................... 17 Hydrogen Delivery ......................................................................................................................................................................................... 18 Tube Trailers ............................................................................................................................................................................................. 18 Pipelines ................................................................................................................................................................................................... 19 Liquid Hydrogen ........................................................................................................................................................................................ 19 Chemical Hydrogen Carriers .................................................................................................................................................................... 19 Hydrogen Dispensing and Fueling ............................................................................................................................................................ 20 Hydrogen Storage ......................................................................................................................................................................................... 21 Physical-based Storage ............................................................................................................................................................................ 21 Material-based Storage ............................................................................................................................................................................ 22 Conversion .................................................................................................................................................................................................... 24 Combustion .............................................................................................................................................................................................. 24 Fuel Cells .................................................................................................................................................................................................. 25 Applications .................................................................................................................................................................................................. 28 Transportation .......................................................................................................................................................................................... 28 Chemical and Industrial Processes .........................................................................................................................................................
Recommended publications
  • Hydrogen Storage Cost Analysis (ST100)
    This presentation contains no proprietary, confidential, or otherwise restricted information. 2020 DOE Hydrogen and Fuel Cells Program Review Hydrogen Storage Cost Analysis (ST100) Cassidy Houchins (PI) Brian D. James Strategic Analysis Inc. 31 May 2020 Overview Timeline Barriers Project Start Date: 9/30/16 A: System Weight and Volume Project End Date: 9/29/21 B: System Cost % complete: ~70% (in year 4 of 5) K: System Life-Cycle Assessment Budget Partners Total Project Budget: $999,946 Pacific Northwest National Laboratory (PNNL) Total DOE Funds Spent: ~$615,000 Argonne National Lab (ANL) (through March 2020 , excluding Labs) 2 Relevance • Objective – Conduct rigorous, independent, and transparent, bottoms-up techno- economic analysis of H2 storage systems. • DFMA® Methodology – Process-based, bottoms-up cost analysis methodology which projects material and manufacturing cost of the complete system by modeling specific manufacturing steps. – Predicts the actual cost of components or systems based on a hypothesized design and set of manufacturing & assembly steps – Determines the lowest cost design and manufacturing processes through repeated application of the DFMA® methodology on multiple design/manufacturing potential pathways. • Results and Impact – DFMA® analysis can be used to predict costs based on both mature and nascent components and manufacturing processes depending on what manufacturing processes and materials are hypothesized. – Identify the cost impact of material and manufacturing advances and to identify areas of R&D interest. – Provide insight into which components are critical to reducing the costs of onboard H2 storage and to meeting DOE cost targets 3 Approach: DFMA® methodology used to track annual cost impact of technology advances What is DFMA®? • DFMA® = Design for Manufacture & Assembly = Process-based cost estimation methodology • Registered trademark of Boothroyd-Dewhurst, Inc.
    [Show full text]
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
    Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL is a national laboratory of the U.S. Department of Energy, Office of Energy NREL is a national laboratory of the U.S. Department of Energy,Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/BK-6A10-58564 May 2014 Contract No. DE -AC36-08GO28308 Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs G. Parks, R. Boyd, J. Cornish, and R. Remick Independent Peer Review Team NREL Technical Monitor: Neil Popovich NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/BK-6A10-58564 Golden, CO 80401 May 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade- mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • The Role and Status of Hydrogen and Fuel Cells Across the Global Energy System
    The role and status of hydrogen and fuel cells across the global energy system Iain Staffell(a), Daniel Scamman(b), Anthony Velazquez Abad(b), Paul Balcombe(c), Paul E. Dodds(b), Paul Ekins(b), Nilay Shah(d) and Kate R. Ward(a). (a) Centre for Environmental Policy, Imperial College London, London SW7 1NE. (b) UCL Institute for Sustainable Resources, University College London, London WC1H 0NN. (c) Sustainable Gas Institute, Imperial College London, SW7 1NA. (d) Centre for Process Systems Engineering, Dept of Chemical Engineering, Imperial College London, London SW7 2AZ. Abstract Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Fuel Cell Powered Vehicles
    Contents Executive Summary .......................................................................................................................................... 1 Introduction ....................................................................................................................................................... 2 Objective ........................................................................................................................................................... 2 Approach ........................................................................................................................................................... 2 Sizing of Fuel Cell Electric Vehicles ............................................................................................................ 3 Assumptions.................................................................................................................................................. 5 Sizing Results ............................................................................................................................................... 7 Results: Midsize FC HEV and FC PHEV ..................................................................................................... 8 Contribution of Fuel Cell Technology Progress .............................................................................................. 11 Results: Impact of Fuel Cell Technologies ................................................................................................
    [Show full text]
  • The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
    The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16.
    [Show full text]
  • Power Sources Challenge
    POWER SOURCES CHALLENGE FUSION PHYSICS! A CLEAN ENERGY Summary: What if we could harness the power of the Sun for energy here on Fusion reactions occur when two nuclei come together to form one Earth? What would it take to accomplish this feat? Is it possible? atom. The reaction that happens in the sun fuses two Hydrogen atoms together to produce Helium. It looks like this in a very simplified way: Many researchers including our Department of Energy scientists and H + H He + ENERGY. This energy can be calculated by the famous engineers are taking on this challenge! In fact, there is one DOE Laboratory Einstein equation, E = mc2. devoted to fusion physics and is committed to being at the forefront of the science of magnetic fusion energy. Each of the colliding hydrogen atoms is a different isotope of In order to understand a little more about fusion energy, you will learn about hydrogen, one deuterium and one the atom and how reactions at the atomic level produce energy. tritium. The difference in these isotopes is simply one neutron. Background: It all starts with plasma! If you need to learn more about plasma Deuterium has one proton and one physics, visit the Power Sources Challenge plasma activities. neutron, tritium has one proton and two neutrons. Look at the The Fusion Reaction that happens in the SUN looks like this: illustration—do you see how the mass of the products is less than the mass of the reactants? That is called a mass deficit and that difference in mass is converted into energy.
    [Show full text]
  • Hydrogen Storage for Mobility: a Review
    materials Review Hydrogen Storage for Mobility: A Review Etienne Rivard * , Michel Trudeau and Karim Zaghib * Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Quebec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada; [email protected] * Correspondence: [email protected] (E.R.); [email protected] (K.Z.) Received: 18 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Numerous reviews on hydrogen storage have previously been published. However, most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities, quick uptake and release of fuel, operation at room temperatures and atmospheric pressure, safe use, and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks, including complex thermal management systems, boil-off, poor efficiency, expensive catalysts, stability issues, slow response rates, high operating pressures, low energy densities, and risks of violent and uncontrolled spontaneous reactions. While not perfect, the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies. Keywords: hydrogen mobility; hydrogen storage; storage systems assessment; Kubas-type hydrogen storage; hydrogen economy 1. Introduction According to the Intergovernmental Panel on Climate Change (IPCC), it is almost certain that the unusually fast global warming is a direct result of human activity [1]. The resulting climate change is linked to significant environmental impacts that are connected to the disappearance of animal species [2,3], decreased agricultural yield [4–6], increasingly frequent extreme weather events [7,8], human migration [9–11], and conflicts [12–14].
    [Show full text]
  • Hydrogen Delivery Roadmap
    Hydrogen Delivery Hydrogen Storage Technologies Technical Team Roadmap RoadmapJuly 2017 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non‐binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; five energy companies — BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities — Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 13 U.S. DRIVE technical teams (“tech teams”) whose mission is to accelerate the development of pre‐competitive and innovative technologies to enable a full range of efficient and clean advanced light‐duty vehicles, as well as related energy infrastructure. For more information about U.S. DRIVE, please see the U.S. DRIVE Partnership Plan, https://energy.gov/eere/vehicles/us-drive-partnership-plan-roadmaps-and-accomplishments or www.uscar.org. Hydrogen Delivery Technical Team Roadmap Table of Contents Acknowledgements .............................................................................................................................................. vi Mission .................................................................................................................................................................
    [Show full text]
  • A Hydrogen Roadmap for Germany
    A Hydrogen Roadmap for Germany C. Hebling, M. Ragwitz, T. Fleiter, U. Groos, D. Härle, A. Held, M. Jahn, N. Müller, T. Pfeifer, P. Plötz, O. Ranzmeyer, A. Schaadt, F. Sensfuß, T. Smolinka, M. Wietschel Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe Fraunhofer Institute for Solar Energy Systems ISE, Freiburg under participation of Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden Karlsruhe and Freiburg October 2019 Contact: Prof. Dr. Christopher Hebling, Fraunhofer ISE, [email protected] Prof. Dr. Mario Ragwitz, Fraunhofer ISI, [email protected] A hydrogen roadmap for Germany EXECUTIVE SUMMARY 1.1 MOTIVATION To meet the worldwide challenge of limiting global warming to less than 2 degrees Celsius, the proportion of fossil fuels in the global energy mix must be reduced to a minimum. Fossil energy sources must therefore be replaced by the implementation of a sustainable circular energy economy, which will be heavily based on hydrogen. Large quantities of hydrocarbons will still be used in some sectors, but these will be produced using renewable energy sources and greenhouse- gas-neutral hydrogen and carbon. Thus, energy systems cannot be decarbonized, but must instead be tailored to meet the goal of greenhouse-gas emissions neutrality. In Germany, this process began in the year 2000 with the enactment of the Renewable Energy Sources Act and continued with the adoption of the German federal government’s energy concept in 2010. This increased the proportion of renewable energy sources in the energy mix to around 38 percent (2018).
    [Show full text]