A Comparison of Two Classification Approaches

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Two Classification Approaches Ann. Bot. Fennici 45: 255–268 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Classification structure of floodplain forests in Estonia: a comparison of two classification approaches Jaanus Paal1, Normunds Prieditis2, Reet Rannik1 & Eva-Maria Jeletsky1 1) Institute of Ecology and Earth Sciences, University of Tartu, Lai St. 40, 51005 Tartu, Estonia (e- mails: [email protected], [email protected], [email protected]) 2) Gandrs Publishers, Kalnciema St. 28, LV-1046 Riga, Latvia (e-mail: [email protected]) Received 30 July 2007, revised version received 21 Jan. 2008, accepted 31 Mar. 2008 Paal, J., Prieditis, N., Rannik, R. & Jeletsky, E.-M. 2008: Classification structure of floodplain for- ests in Estonia: a comparison of two classification approaches. — Ann. Bot. Fennici 45: 255–268. Flooded forests in 79 sample areas were studied in various parts of Estonia. Using the principal component analysis and cluster analysis, six community types were established: (i) Tilia cordata–Mercurialis perennis, (ii) Ulmus laevis–Allium ursinum, (iii) Populus tremula–Convallaria majalis, (iv) Alnus incana–Cirsium oleraceum, (v) Alnus glutinosa–Filipendula ulmaria and, (vi) Alnus glutinosa–Carex acutiformis. The species composition of these types partly overlaps but the abundance propor- tions of species are clearly different and all types have several significant indicator species. Another classification scheme was established by TWINSPAN analysis. Fol- lowing the phytosociological approach, the communities belong to Querco–Fagetea, Alno–Ulmion (Pruno–Fraxinetum, Ficario–Ulmetum, Pruno padi–Alnetum incanae, the latter subdivided further into P.p.–A.i. var. Frangula alnus and P.p.–A.i. var. Urtica dioica), and to Alnetea glutinosae, Alnion (Carici elongatae–Alnetum, represented with two subassociations: C.e.–A. typicum and C.e.–A. cardaminetosum). Despite different concepts used for establishment of community types by either approach the obtained results are rather similar. The syntaxa of Alno–Ulmion show particularly high internal variability, although all recognised communities have unambiguous affinities with the assemblages described elsewhere from central and northern-central Europe. Key words: indicator species, TWINSPAN, Querco–Fagetea, Alno–Ulmion, Alnetea glutinosae. Introduction in most European countries, floodplain forests have remained in comparatively small areas and Floodplain forests have very specific ecological they are recognised as strongly threatened com- conditions in the temperate zone (Klimo 2001, munities (Paal 1998). According to the Habitat Hager & Schume 2001) and are usually uniquely Directive (EC 1992), floodplain forests belong characterized by a combination of high species to the habitats of great importance (types 91E0 diversity, high density and high productivity and 91F0) for nature protection on the European (Mitsch & Gosselink 2000). In Estonia, like scale. 256 Paal et al. • ANN. BOT. FENNICI Vol. 45 At the same time, Estonian floodplain forests along the Halliste and Raudna rivers in Soomaa have been characterised only sporadically and National Park, (iii) in the Alam-Pedja Nature long time ago by Kull (1925), Lippmaa (1935), Reserve on the banks of the Pedja River and the Lunts (1938) and Marvet (1967). According to ditched Loksu Rivulet, (iv) in the valley of the the forest classification system adopted in Esto- Jänijõgi in northern Estonia and, (v) in the valley nia, these forests are not singled out as an of the Poruni River in the Puhatu Nature Reserve autonomous site type but are dealt with under (Fig. 1). Floodplain forests can be found in sev- the broad swamp forest site type (sensu Lõhmus eral other places along the brooks or rivulets as 2004). Relationship of floodplain forests with well, but there they border the watercourses as other forest types has been treated briefly by very narrow strips, form only small groves and/or Ilves (1969), Masing (1966, 1969), Marvet are intensively attenuated by cuttings. (1970), Paal (1997) and Paal et al. (2006) but not In every stand one round sample plot of ca. in a wider geographical scale or in terms of the 0.1 ha was analysed. A sample plot was estab- phytosociological syntaxonomy largely used in lished using a height and distance measuring western, central and southern Europe. Estonian instrument Suunto: one tree stem was treated forest site type classification follows Cajander’s as a central one and from that a radius of 17.8 concept (Cajander 1909, 1926, 1930, Frey 1973, m was measured in different directions. Ground Lõhmus 2004) and any attempts to connect or vegetation was described by means of randomly compare that with phytosociological classifica- located sample squares of 1 ¥ 1 m, their number tion approach are almost lacking. was 15 per stand. The total cover percentage The aims of the current study are: (i) to estab- of the herb and moss layers as well as of every lish a phytosociological classification of Estonian plant species was estimated. For further char- floodplain forests, (ii) to evaluate its correspond- acterization and classification of a respective ence to the classification scheme elaborated ear- stand (plant community) for ground vegetation lier on the basis of cluster and discriminant anal- the averaged values of 15 sample squares were yses (Paal et al. 2006, 2007) and, (iii) to compare used. If some species were recorded in a sample the syntaxa of the Estonian floodplain forests plot but were not found in the squares, they were with corresponding phytosociological units on a included in the community species list condi- wider geographical scale. tionally with a coverage of 0.01%. The number of shrub layer species stems was registered on five randomly located 2 ¥ Material and methods 2 m sample squares in every stand. Young trees (saplings) with a height of < 4 m and/or with Field study a diameter of < 5 cm at breast height (1.3 m) were also interpreted as belonging to the shrub In the current study we regarded as floodplain layer and treated as “species”. Shrub species forests stands where floods occur regularly almost outside the randomly situated squares were taken every year and last at least for a couple of weeks, into account with number 1. The tree layer was while the amount of alluvial sediments was not characterised by the mean basal area of every a decisive criterion (Ellenberg 1996, Hager & species, obtained as an average result of 3–5 Buchleitner 2001, Oszlányi 2001). All in all, 79 measurements. subnatural stands (= plant communities) were The nomenclature of vascular plant species studied in the country, representing considerably follows Leht et al. (1999) and the nomencla- well preserved floodplain forests with an area ture of bryophytes follows Ingerpuu and Vellak not smaller than 0.5 ha, and not having obvious (1998). human activities impact (only a little decaying stumps, even age tree layer, ditches, roads, lines). Forests satisfying these criteria are located in Data processing Estonia in five regions: (i) on the banks of the Rannametsa River in southwestern Estonia, (ii) Our first floodplain forest classification (Paal et ANN. BOT. FENNICI Vol. 45 • Floodplain forests in Estonia 257 NARVA RAKVERE TALLINN IV KOHTLA-JÄRVE V KÄRDLA RAPLA HAAPSALU PAIDE JÕGEVA PÕLTSAMAA III PÄRNU II TARTU VILJANDI KURESSAARE I PÕLVA VÕRU VALGA Fig. 1. Location of sample regions and sample plots. 50 km al. 2006, 2007) was based on a cluster analysis A null hypothesis of absence of difference where ten first principal components of plant between corresponding vegetation types, estab- communities’ data (relevés) were used as input. lished with the use of MISSQ and TWINSPAN These described 72% of the total variation in methods, was tested using a multi-response per- the data. A cluster analysis was performed using mutation procedure (MRPP) (McCune & Mef- the minimal incremental sum of squares algo- ford 1999). Communities were ordinated by rithm — MISSQ (Podani 2000), employing the means of a detrended correspondence analysis chord distance as the measure of dissimilarity. (DCA) (ter Braak & Šmilauer 2002); down- Objectivity of clustering of every relevé was weighting of rare species was applied. tested with a classificatory discriminant analysis (StatSoft Inc. 2001). The second classification was carried out Results using the TWINSPAN algorithm (Hill 1979, Gauch & Whittaker 1981). Values 0, 2, 5, 10 MISSQ analysis and 20 were used as pseudospecies cut levels, corresponding to the default settings of the PC- Six clusters (community types) were established ORD package (McCune & Mefford 1999). The with the MISSQ analysis: (i) Tilia cordata–Mer- obtained clusters were further interpreted in curialis perennis type, (ii) Ulmus laevis–Allium terms of phytosociology. ursinum type, (iii) Populus tremula–Convallaria Indicator values of the species in clusters majalis type, (iv) Alnus incana–Cirsium oler- were calculated using the Dufrêne and Legren- aceum type, (v) Alnus glutinosa–Filipendula dre (1997) method. According to that, for each ulmaria type, (vi) Alnus glutinosa–Carex acuti- species its relative abundance and relative fre- formis type. quency in every group (= community type) was Species composition, their indicator values, calculated. Multiplication of these two values, mutual relationships between types, as well expressed as a percentage, yields an indica- as growth conditions of respective communi- tor value for a particular species in a particular
Recommended publications
  • Jtudies Concerning Teliospore Germination 1And
    JTUDIES CONCERNING TELIOSPORE GERMINATION 1AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL-AECIAL HOSTS OF PUCCINIA RE CONDIT A ROB . EX DESM. F . SP , TRITICI ERIKSS . BY DICKIE DON DA,, VIS Bachelor of Science University of Oklahoma Norman, Oklahoma 1960 Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June, 1963 comPiHU!Viit't .~u/l;\1lE rn~1:veJ11si1:0ir.­ ilJ~Fu~~v STUDIES CONCERNING TELIOSPORE GERMINATION AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL~AECIAL HOSTS OF PUCCINIA RijCONDIT A, ROB. EX PESM, F. SP. TRITICI ERIKSS, Thesis Approved: '"' ··-- ; 541894 ii ACKNOWLEDGMENTS The writer wishes to thank Dr. H. C. Young, Jr. for aid in sec1,1ring materials essential to these experiments and for 1;1,elpful suggestions during th,<;? course of the studies and in preparation of the manuscript. The writer is also indebted to Dr. J. E. Thomas for aid in clarifying tbe pr~sentation, and to Dr. W. W. Hansen for critical reading of the map.u­ SCl;'ipt. iii TABLE OF CONTENTS Page INTRODUCTION • • . 1 REVIEW OF LITERATURE . 3 MATERIALS AND METHODS 13 RESULTS • • . • • • • . 16 Experiment 1. Attempted Germination of Greenhouse-Grown Teliospores Under a Wide Range of Conditions for One Year. .. 16 Experiment 2. Attempted Germination of Greenhouse -Grown Teliospores Under an Arbitit'arily Chosen S~t of "Opti- mum" Conditions of Six Weeks Duration. • . • 22 Exgeriment 3. Environmental Conditions Resulting in Success- ful Germination of Field-Grown, Overwintered Telio- spores. 24 Experiment 4. Germination of Field-Grown Teliospores Under Carefully-Coo.trolled Environmental Conditions.
    [Show full text]
  • RIS) Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
    Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties Note: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was completed/updated: 28th March 2002 2. Country: Slovakia 3. Name of wetland: Latorica 4. Geographical coordinates: 48º 28' N, 022º 00' E 5. Elevation: (average and/or maximum and minimum) 100 m (99 – 103 m) 6. Area: (in hectares) 4 404,7 ha (refined estimation) 7. Overview: (general summary, in two or three sentences, of the wetland's principal characteristics) The site includes a part of the floodplain area of the Latorica River defined by levees, from the Ukrainian borders to the confluence with the Laborec River in the Latorica Protected Landscape Area, in S part of the East Slovakian Lowland. It is characterized by a well-developed system of branches, seasonally inundated habitats with adjacent floodplain forests and grasslands. Threatened and rare aquatic and swamp biocoenoses of lowland, flooded habitats are represented. Several nature reserves are included in the site. 8. Wetland Type: (please circle the applicable codes for wetland types as listed in Annex I of the Explanatory Note and Guidelines document) marine-coastal: AB CDE FGH I J KZk(a) inland: L MNO PQRSpSs Tp Ts UVaVtW Xf Xp Y Zg Zk(b) human-made: 1 2 3 45 678 9 Zk(c) Please now rank these wetland types by listing them from the most to the least dominant: P, Tp, M, Xf, O, 4, Ts, W, 9, 7 9.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Colonial Garden Plants
    COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds.
    [Show full text]
  • Skarpa Ursynowska” Nature Reserve (Poland)
    SPECIES RESTITUTION – A WAY TO IMPROVE FLORISTIC DIVERSITY OF MEADOW COMMUNITIES IN „SKARPA URSYNOWSKA” NATURE RESERVE (POLAND) Maria JANICKA1*, Bogumiła PAWLUŚKIEWICZ2 1Department of Agronomy, Warsaw University of Life Sciences – SGGW, Poland 2Department of Environmental Improvement, Warsaw University of Life Sciences – SGGW, Poland *Corresponding author: [email protected] Abstract The landscape reserve „Skarpa Ursynowska” is one of the 12 nature reserves situated in Warsaw (Poland). It was created in 1996 to protect piece of the high Vistula escarpment along with meadows and peat bogs of high natural values, which are located at the foot of Vistula escarpment. Cessation of management (from 1998 year) and the neglected, non-functioning drainage system for many years, as well as the storm canal banks covered with the concrete, have contributed to changes in habitat conditions and in botanical composition of post-marsh meadow communities. Floristic impoverishment of meadow communities, development of herbaceous (mainly willow) communities and invasive, arable land weeds and ruderal plants were demonstrated. These communities were characterized by small natural values, which reduced the aesthetic and landscape value of the reserve. The inadequate protection status of the meadow communities of the “Skarpa Ursynowska” reserve obliges to take action to stop the above mentioned processes and to restore the multi-species meadow communities. For this purpose, seedlings of wild flowers, dicotyledonous plant species (grown in laboratory conditions from seeds obtained from natural sites) were planted. The studies were carried out during 2015–2016. The growth and development of plants, the condition and range of the populations and the threats of 22 plant species were determined.
    [Show full text]
  • Wet Meadow Plant Communities of the Alliance Trifolion Pallidi on the Southeastern Margin of the Pannonian Plain
    water Article Wet Meadow Plant Communities of the Alliance Trifolion pallidi on the Southeastern Margin of the Pannonian Plain Andraž Carniˇ 1,2 , Mirjana Cuk´ 3 , Igor Zelnik 4 , Jozo Franji´c 5, Ružica Igi´c 3 , Miloš Ili´c 3 , Daniel Krstonoši´c 5 , Dragana Vukov 3 and Željko Škvorc 5,* 1 Research Centre of the Slovenian Academy of Sciences and Arts, Institute of Biology, 1000 Ljubljana, Slovenia; [email protected] 2 School for Viticulture and Enology, University of Nova Gorica, 5000 Nova Gorica, Slovenia 3 Department of Biology and Ecology, Faculty of Science, University of Novi Sad, 21000 Novi Sad, Serbia; [email protected] (M.C.);´ [email protected] (R.I.); [email protected] (M.I.); [email protected] (D.V.) 4 Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] 5 Faculty of Forestry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (J.F.); [email protected] (D.K.) * Correspondence: [email protected] Abstract: The article deals with wet meadow plant communities of the alliance Trifolion pallidi that appear on the periodically inundated or waterlogged sites on the riverside terraces or gentle slopes along watercourses. These plant communities are often endangered by inappropriate hydrological interventions or management practices. All available vegetation plots representing this vegetation type were collected, organized in a database, and numerically elaborated. This vegetation type appears in the southeastern part of the Pannonian Plain, which is still under the influence of the Citation: Carni,ˇ A.; Cuk,´ M.; Zelnik, Mediterranean climate; its southern border is formed by southern outcrops of the Pannonian Plain I.; Franji´c,J.; Igi´c,R.; Ili´c,M.; and its northern border coincides with the influence of the Mediterranean climate (line Slavonsko Krstonoši´c,D.; Vukov, D.; Škvorc, Ž.
    [Show full text]
  • Ecuador & Galapagos
    Estonia, species list and trip report, 26th May to 2nd June 2019 WILDLIFE TRAVEL v Estonia 2019 1 Estonia, species list and trip report, 26th May to 2nd June 2019 # DATE LOCATIONS AND NOTES 1 26th May Flight to Tallinn, travel to western Estoni and Matsalu National Park, nr Puise 2 27th May Matsalu NP, Puise peninsula, Silma nature reserve, Haapsalu 3 28th May Pusie, Pogari-Sassi, Lagleranna matkarada, Udruma meadows, Keemu reserve, Kasari River 4 29th May Puise Nina, Rame junction, Laelatu meadow, Tuhu, Virtsu, Muhu Island- Koguva 5 30th May Loona- Saaremaa island, Viidumae, Kogula, Loode, Hotell Saaremaa, Sorve Peninsula 6 31st May Loona, Kaali Krater, Laidevahe Nature Reserve, Puhtu-Laelatu, Pärnu Nature Reserve 7 1st June Klaara Manni, Sooma Rahuspark 8 2nd June Paljasaare Peninsula Tallinn LIST OF TRAVELLERS Leader and Guide Charlie Rugeroni Wildlife Travel Peeter Vissak NatourEst, Estonia Photos all by Charlie Rugeroni, unless marked PV (Peeter Vissak) and JR (Judith Robinson) Cover: Lady’s Slipper Orchid. Above: Laelatu 2 Estonia, species list and trip report, 26th May to 2nd June 2019 Day 1 Sunday 26th May Outbound to Lennart Meri Tallinn Airport; transfer to Puise Nina Guesthouse We were welcomed to Estonia by Peeter and once our bags were in the minibus we set off west to Puise peninsula and our first night’s guesthouse. The trip, on a Sunday afternoon, was straightforward and quiet. In the late-afternoon-early-evening northern light we were able to catch glimpses of Estonia’s Siberian-like natural forests, its peat bogs, coastal meadows, reed beds and fascinating coastline with innumerable inlets, glacial erratics and its flatness.
    [Show full text]
  • Plant List 2011
    ! Non-Arboretum members who spend $25 at Saturday’s Plant Sale receive a coupon for a future free visit to the Arboretum! (One per Person) University of Minnesota ASTILBE chinensis ‘Veronica Klose’ (False Spirea)--18-24” Intense red-purple plumes. Late summer. Shade Perennials ASTILBE chinensis ‘Vision in Pink’ (False Spirea)--18” Sturdy, upright pink plumes. Blue-green foliage. M. Interest in Shade Gardening continues to grow as more homeowners are finding ASTILBE chinensis ‘Vision in Red’ (False Spirea)--15” Deep red buds open their landscapes becoming increasingly shady because of the growth of trees and to pinky-red flowers. Bronze-green foliage. July. shrubs. Shade plants are those that require little or no direct sun, such as those in ASTILBE chinensis ‘Vision in White’ (False Spirea)--18-24” Large creamy- northern exposures or under trees or in areas where the sun is blocked for much of the white plumes. Smooth, glossy, green foliage. July. day. Available from us are many newly introduced plants and old favorites which can ASTILBE chinensis ‘Visions’ (False Spirea)--15” Fragrant raspberry-red add striking foliage and appealing flowers to brighten up your shade garden plumes. Deep green foliage. M. You will find Shade Perennials in the SHADE BUILDING. ASTILBE japonica ‘Montgomery’ (False Spirea)--22” Deep orange-red ACTAEA rubra (Red Baneberry)--18”Hx12’W Clumped bushy appearance. In spring plumes on dark red stems. M. bears fluffy clusters of small white flowers producing shiny red berries which are toxic. ASTILBE simplicifolia ‘Key Largo’ (False Spirea)--15-20” Reddish-pink flow- ers on red stems.
    [Show full text]
  • Samara English Edition 34 (PDF)
    The International Newsletter of the Millennium Seed Bank Partnership July - December 2018 brahmsonline.kew.org/msbp/Training/Samara ISSN 1475-8245 Issue: 34 PuttingPutting seedsseeds toto goodgood useuse KyrgyzstanKyrgyzstan exploresexplores thethe pharmacologicalpharmacological potentialpotential ofof itsits nativenative floraflora Landscape of Kyrgyzstan Photo: RBG Kew ANARA UMRALINA (Head of Plant Biotechnology Laboratory, Institute of Biotechnology National Academy of Sciences of the Kyrgyz Republic) Contents Page 1. Putting seeds to good use. SERGEY HEGAY Page 3. A message from Jonas Mueller. A message from Sandrine Godefroid. (Plant Biotechnology Researcher, Biotechnology Institute National Academy of Scien- Page 4. Reintroduction of endangered grassland species in ces of Kyrgyz Republic) Luxembourg. Page 5. RBG Kew develops a land restoration model to support the Great Green Wall in sub-Saharan Africa. yrgyzstan, despite its rather limited territory, has one of the richest floras in Cen- Page 6. Achieving GSPC Target 8 in Azerbaijan. tral Asia, with around 4,000 species described to date, at least 10% of which are Page 7. Seed Banking as a Last Resort for Endangered endemic or sub-endemic (i.e. grow only in Kyrgyzstan or slightly beyond its bor- Plant Populations. K Young researchers experience the Austrian Alps ders). The floristic diversity is partly due to Kyrgyzstan’s geographic location in the heart through seeds. of the mountain systems of Tian Shan and Pamir Alay, where the vegetation ranges from Page 8-9.Germination research and species reintroductions. semi-desert to tall herb meadows and from fruit and nut forests to alpine pastures. Page 10.A model of reforestation, food security and long-term carbon sequestration in Haiti.
    [Show full text]
  • New Plant Community (Caricetum Buekii Hejný Et Kopecký in Kopecký Et Hejný 1965) from Croatia
    NAT. CROAT. VOL. 17 No 1 15¿26 ZAGREB March 31, 2008 original scientific paper / izvorni znanstveni rad NEW PLANT COMMUNITY (CARICETUM BUEKII HEJNÝ ET KOPECKÝ IN KOPECKÝ ET HEJNÝ 1965) FROM CROATIA ZVJEZDANA STAN^I] Ul. Stjepana Radi}a 28, HR-49 221 Bedekov~ina, Croatia (E-mail: [email protected]) Stan~i}, Z.: New plant community (Caricetum buekii Hejný et Kopecký in Kopecký et Hejný 1965) from Croatia. Nat. Croat., Vol. 17, No. 1., 15–26, 2008, Zagreb. In this paper, the association Caricetum buekii is noted for the first time in Croatia. It has been es- tablished in wet habitats in the valleys of the Korana and Radonja rivers. Phytosociologically, it be- longs to marshland vegetation of the class Phragmito-Magnocaricetea. The present paper also makes a contribution to the knowledge of the distribution of Carex buekii in Croatia. The species has been found at three new localities south of Karlovac: in Vukmani}ki Cerovec, Tu{ilovi} and Krnjak. Key words: Carex buekii, distribution map, marshland vegetation, Phragmito-Magnocaricetea, Mag- nocaricion elatae, Croatia Stan~i}, Z.: Nova biljna zajednica (Caricetum buekii Hejný et Kopecký in Kopecký et Hejný 1965) u Hrvatskoj. Nat. Croat., Vol. 17, No. 1., 15–26, 2008, Zagreb. U ovome radu je po prvi puta zabilje`ena asocijacija Caricetum buekii za Hrvatsku. Utvr|ena je na vla`nim stani{tima u dolini rijeke Korane i Radonje. Fitocenolo{ki pripada mo~varnoj vegetaciji razreda Phragmito-Magnocaricetea. Ovim radom je tako|er dat doprinos poznavanju rasprostranje- nosti vrste Carex buekii u Hrvatskoj. Vrsta je ustanovljena na tri nova nalazi{ta ju`no od Karlovca: u Vukmani}kom Cerovcu, Tu{ilovi}u i Krnjaku.
    [Show full text]
  • Gap Analysis Final Report
    University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies WWF Project Reference No 9Z1387.05 “Protected Areas for a Living Planet – Dinaric Arc Ecoregion Project” Protected Area Gap Analysis (Final Report) Peter Glasnovi ć, BSc Boris Krystufek, PhD Andrej Sovinc, MSc Mileta Bojovi ć, BSc Deni Porej, PhD December 2009 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis The Final Report by: University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies Garibaldijeva 1 6000 Koper Tel.: ++386 5 663 77 00, fax: ++386 5 663 77 10 E-mail: [email protected] Regional Scientific Coordinator: Peter Glasnovi ć, BSc; Boris Krystufek, PhD; Andrej Sovinc, MSc Cartography: Mileta Bojovi ć, BSc National Scientific Coordinators: Leon Kebe, BSc (Slovenia); Irina Zupan, MSc (Croatia); Senka Barudanovi ć, PhD (Bosnia and Herzegovina); Dragan Roganovi ć, PhD (Montenegro); Genti Kromidha, PhD (Albania) External experts: Boris Sket, PhD; Maja Zagmaister, PhD; Borut Štumberger, BSc WWF Mediterranean Programme Office: Director of Conservation Deni Porej, PhD Project Leader Stella Šatali ć, MSc Partners of the project: TNC (The Nature Conservancy), EuroNatur, Institute for Nature Conservation in Albania (Albania), University of Sarajevo – Faculty of Science (Bosnia and Herzegovina), State Institute for Nature Protection (Croatia), Institute for Nature Protection (Montenegro) 2 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis Acknowledgments: Dragan Kova čevi ć, Banja Luka
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]