The Changing Distribution of the Flora of the United Kingdom: Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

The Changing Distribution of the Flora of the United Kingdom: Technical Report CENTRE FOR ECOLOGY AND HYDROLOGY NATURAL ENVIRONMENT RESEARCH COUNCIL The Changing Distribution of the Flora of the United Kingdom: Technical Report C. D. Preston, M. G. Telfer, D.B. Roy, P. D. Carey, M. O. Hill, W. R. Meek, P. Rothery, S.M. Smart, G.M. Smith, K. J. Walker (CEH) D A Pearman (BSBI) July 2003 CEH PROJECT No: C01093 Centre for Ecology and Hydrology CEH Monks Wood Abbots Ripton, Huntingdon, Cambs. UK CONTENTS EXECUTIVE SUMMARY .........................................................................................1 INTRODUCTION........................................................................................................3 MODULE 1 – CHARACTERISING HABITAT REQUIREMENTS OF SPECIES ......................................................................................................................5 1.1 Frequency of occurrence of plant species in Broad Habitat categories.........................................5 1.2 Calculation of species’ preference indices to Broad Habitat categories....................................... 5 1.3 Validation and extension of characteristic species lists .................................................................6 MODULE 2 - MODELS OF EXPECTED SPECIES DIVERSITY........................7 2.1 Definition of local species pool ......................................................................................................7 2.2 Categorization of taxa by likely completeness of recording...........................................................7 2.3 Attributes of 10-km squares............................................................................................................7 2.4 Basic analysis of well-recorded native species in squares with >30% land ..................................8 2.5 Basic analysis for native species .................................................................................................10 2.6 Variation in coverage attributable to difficult species..................................................................12 2.7 Variation in coverage attributable to neophytes ..........................................................................13 2.8 Coastal, aquatic and urban species..............................................................................................13 2.9 Estimating coverage in boundary squares....................................................................................13 2.10 Estimating coverage in squares with little land..........................................................................14 2.11 Synthesis of coverage by date class and vice-county..................................................................14 MODULE 3 - ANALYSING CHANGE IN THE UK AND ITS COMPONENT COUNTRIES AND REGIONS.................................................................................17 3.1 Introduction ..................................................................................................................................17 3.2 Analysis of change in Britain in relation to habitat (Stage 1) ......................................................17 3.3 Analysis of change in countries and regions (Stage 2).................................................................23 3.4 Quantitative analysis of the dynamism of species (Stage 3) .........................................................36 3.5 Analysis of change in relation to frequency and conservation status (Stage 4) ...........................41 3.6 Spatial analysis of change (Stage 5).............................................................................................47 MODULE 4 - COMPARISON WITH OTHER STUDIES....................................49 4.1 Comparison with the results of the countryside survey ................................................................49 4.2 Comparison with results in county Floras....................................................................................55 ACKNOWLEDGEMENTS ......................................................................................59 REFERENCES...........................................................................................................59 ANNEX 1 Notes on the definitions of broad habitats ANNEX 2 Broad habitat associations of native and archaeophyte species ANNEX 3 Maps of broad habitat types ANNEX 4 Regional change index values ANNEX 5 Extinction proportion, colonisation proportion, dynamism index and dynamism score ANNEX 6 Species reported by the New Atlas and the Countryside Survey ANNEX 7 Comparison of trends revealed by New Atlas and Countryside Survey datasets ANNEX 8 Suggested reasons for differences between results obtained by New Atlas and Countryside Survey analyses EXECUTIVE SUMMARY This Report presents the results of analyses of data collected for the New Atlas of the British and Irish Flora, a survey of the distribution of vascular plant species in Britain and Ireland carried out between 1987 and 1999. It includes comparisons with the only previous such survey, published in 1962 in the Atlas of the British Flora. The analyses are carried out for the U.K., on a regional basis and at a 10-km square scale. Analyses of floristic change have hitherto been handicapped by the absence of a classification of species into habitat categories. We have therefore allocated native and archaeophyte species to the Broad Habitat (BH) categories devised for the UK Biodiversity Action Plan. To do this, we calculated preference indices using the quadrat data collected for the National Vegetation Classification and for the Countryside Survey 2000 project. Additional information, including the species accounts published in the New Atlas, were used to extend the classification to the rarer species which are not adequately covered in the quadrat databases. The next section of the report analyses the geographical variation in the number of species recorded per 10-km square. The total of non-critical native and archaeophyte species expected in a 10-km square has been modelled using combinations of geological, climatic, topographic and habitat variables. In the UK, 65% of the variation found in the species richness of these squares can be attributed to climatic factors. Including the full range of variables improved the model fit to 76%. Models that adjusted for the richness of the local species pool (biogeographic zones) were generally little better than those obtained using a single species pool for the whole of the UK. Separate models of species richness developed for each Broad Habitat, varied in their prediction success from 34% to 88%. Linear and boundary features, Built-up areas and Montane habitats were best predicted. The worst-predicted Broad Habitats were Acid grassland, Inland rock, and Fen marsh and swamp. Models have also been applied to provide an expected estimate of those native species which are difficult to record, and to neophytes. The variation in recording intensity in the three recording periods mapped in the New Atlas (pre-1970, 1970-1986, 1987 onwards) is summarised in a series of vice-county maps which shows that most counties were at least moderately well recorded in the pre-1970 and post-1986 periods. The exceptions are identified. The relative success of vascular plants characteristic of different Broad Habitat categories is analysed using a change index developed in an earlier paper. In Britain as a whole, native and archaeophyte species in the Arable and horticultural, Dwarf shrub heath, Calcareous grassland, Bog, Montane and Acid grassland categories have been the least successful, whereas those of Improved grassland and Built-up areas and gardens have done relatively well. When the results are analysed for individual countries and regions of the UK there is considerable geographical variation: species of Arable and horticultural habitats have done less well in the three regions of Scotland examined than elsewhere, for example, whereas those of Acidic grassland show little change in the Scottish regions but a marked decrease elsewhere. Changes in plants of aquatic habitats (Rivers and streams, Standing water and canals) are difficult to interpret because as a group they were under-recorded in 1930-69 but covered by intensive, targeted recording in Scotland and N. Ireland in the later period. 1 There is also marked geographical variation in the patterns of change analysed for species with different ecological attributes. • The relative success of neophytes, decline of archaeophytes and stability of native species is shown in almost all regions, but in Scotland archaeophytes have declined to an even greater extent than elsewhere, and neophytes have been less successful. • Species characteristic of habitats with high nutrient levels have been relatively successful in almost all areas except the Scottish Highlands, but in England the success of these species has been particularly marked. • Species characteristic of sites with very acidic or very basic soils have been less successful than those of circum-neutral conditions in all areas except the Scottish Highlands. • In many areas species of shaded conditions have been more successful than those of unshaded sites, but there is no significant trend in S.E. England, N. and N.W. England and Highland Scotland, and the trend is in the opposite direction in S.W. Scotland. • Tall plants (which tend to be more competitive) have been more successful than short plants in all areas except Highland Scotland. • Northern species have declined in all regions except Highland Scotland. A ‘dynamism index’
Recommended publications
  • RESTORATION ACTION PLAN MARINA DUNES PRESERVE Marina, California
    RESTORATION ACTION PLAN MARINA DUNES PRESERVE Marina, California Prepared for: Monterey Peninsula Regional Park District 4860 Carmel Valley Road Carmel, CA 93923 Prepared by: Burleson Consulting Inc. 1900 Garden Road, Suite 210 Monterey, CA 93940 March 2021 This page intentionally left blank Restoration Action Plan, Marina Dunes Preserve CONTENTS CONTENTS ..........................................................................................................................................i APPENDICES ...................................................................................................................................... ii ACRONYMS AND ABBREVIATIONS ..................................................................................................... iii 1. INTRODUCTION ...................................................................................................................... 1 1.1 Setting ........................................................................................................................................... 1 1.2 Purpose ......................................................................................................................................... 1 1.3 Approach ....................................................................................................................................... 2 2. UPDATED BEST MANAGEMENT PRACTICES .............................................................................. 3 2.1 Weed Eradication and Control .....................................................................................................
    [Show full text]
  • Jtudies Concerning Teliospore Germination 1And
    JTUDIES CONCERNING TELIOSPORE GERMINATION 1AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL-AECIAL HOSTS OF PUCCINIA RE CONDIT A ROB . EX DESM. F . SP , TRITICI ERIKSS . BY DICKIE DON DA,, VIS Bachelor of Science University of Oklahoma Norman, Oklahoma 1960 Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June, 1963 comPiHU!Viit't .~u/l;\1lE rn~1:veJ11si1:0ir.­ ilJ~Fu~~v STUDIES CONCERNING TELIOSPORE GERMINATION AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL~AECIAL HOSTS OF PUCCINIA RijCONDIT A, ROB. EX PESM, F. SP. TRITICI ERIKSS, Thesis Approved: '"' ··-- ; 541894 ii ACKNOWLEDGMENTS The writer wishes to thank Dr. H. C. Young, Jr. for aid in sec1,1ring materials essential to these experiments and for 1;1,elpful suggestions during th,<;? course of the studies and in preparation of the manuscript. The writer is also indebted to Dr. J. E. Thomas for aid in clarifying tbe pr~sentation, and to Dr. W. W. Hansen for critical reading of the map.u­ SCl;'ipt. iii TABLE OF CONTENTS Page INTRODUCTION • • . 1 REVIEW OF LITERATURE . 3 MATERIALS AND METHODS 13 RESULTS • • . • • • • . 16 Experiment 1. Attempted Germination of Greenhouse-Grown Teliospores Under a Wide Range of Conditions for One Year. .. 16 Experiment 2. Attempted Germination of Greenhouse -Grown Teliospores Under an Arbitit'arily Chosen S~t of "Opti- mum" Conditions of Six Weeks Duration. • . • 22 Exgeriment 3. Environmental Conditions Resulting in Success- ful Germination of Field-Grown, Overwintered Telio- spores. 24 Experiment 4. Germination of Field-Grown Teliospores Under Carefully-Coo.trolled Environmental Conditions.
    [Show full text]
  • Phd Position in Ecology and Evolutionary Botany
    PhD in Biology Institut de Biologie LaborAtoire de génétique PhD position in ecology and evolutionary évolutive botany Available from February 1, 2020 INFORMATION A four-year PhD position combining ecology and evolutionary botany is available in the Laboratory of evolutionary genetics, Institute of Biology, University of Neuchâtel, Switzerland. The thesis is financed by the Swiss National Science Foundation (SNF) within the framework of a Sinergia project. It is directed by Prof. Jason Grant (UniNe) and co-supervised by Dr. Pierre-Emmanuel Du Pasquier (UniNe) and Dr. Beryl Laitung (Université de Bourgogne, UMR Agroécologie, DiJon, France). BACKGROUND AND OBJECTIVES Anthropic pressure may lead to the rapid and sometimes irreversible decline of botanical diversity, or on the contrary, favors the expansion of certain non-native species. In Europe, since the mid-20th century, the intensification and modernization of agricultural practices (mechanization with deep ploughing, use of herbicides, seed sorting, densification of monocultures and systematic use of certified seeds) has had an unprecedented impact on archaeophyte messicole species (crop-related species that were introduced mainly from the Middle East before the year 1500). As messicole species are generally therophytes (annual plants that spend the difficult season in the form of seeds), modernization quickly destroys seed stocks in the soil and contributes to the decline of these populations that were common until the mid-20th century. Although messicolous species are part of the floristic richness of the different countries where they are now native, they seem to have been introduced in the past by man in the form of seed since the domestication of crops from the Neolithic period (11000 to 9000 years ago).
    [Show full text]
  • List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
    British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf.
    [Show full text]
  • Condition of Designated Sites
    Scottish Natural Heritage Condition of Designated Sites Contents Chapter Page Summary ii Condition of Designated Sites (Progress to March 2010) Site Condition Monitoring 1 Purpose of SCM 1 Sites covered by SCM 1 How is SCM implemented? 2 Assessment of condition 2 Activities and management measures in place 3 Summary results of the first cycle of SCM 3 Action taken following a finding of unfavourable status in the assessment 3 Natural features in Unfavourable condition – Scottish Government Targets 4 The 2010 Condition Target Achievement 4 Amphibians and Reptiles 6 Birds 10 Freshwater Fauna 18 Invertebrates 24 Mammals 30 Non-vascular Plants 36 Vascular Plants 42 Marine Habitats 48 Coastal 54 Machair 60 Fen, Marsh and Swamp 66 Lowland Grassland 72 Lowland Heath 78 Lowland Raised Bog 82 Standing Waters 86 Rivers and Streams 92 Woodlands 96 Upland Bogs 102 Upland Fen, Marsh and Swamp 106 Upland Grassland 112 Upland Heathland 118 Upland Inland Rock 124 Montane Habitats 128 Earth Science 134 www.snh.gov.uk i Scottish Natural Heritage Summary Background Scotland has a rich and important diversity of biological and geological features. Many of these species populations, habitats or earth science features are nationally and/ or internationally important and there is a series of nature conservation designations at national (Sites of Special Scientific Interest (SSSI)), European (Special Area of Conservation (SAC) and Special Protection Area (SPA)) and international (Ramsar) levels which seek to protect the best examples. There are a total of 1881 designated sites in Scotland, although their boundaries sometimes overlap, which host a total of 5437 designated natural features.
    [Show full text]
  • Design a Database of Italian Vascular Alimurgic Flora (Alimurgita): Preliminary Results
    plants Article Design a Database of Italian Vascular Alimurgic Flora (AlimurgITA): Preliminary Results Bruno Paura 1,*, Piera Di Marzio 2 , Giovanni Salerno 3, Elisabetta Brugiapaglia 1 and Annarita Bufano 1 1 Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy; [email protected] (E.B.); [email protected] (A.B.) 2 Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy; [email protected] 3 Graduate Department of Environmental Biology, University “La Sapienza”, 00100 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Despite the large number of data published in Italy on WEPs, there is no database providing a complete knowledge framework. Hence the need to design a database of the Italian alimurgic flora: AlimurgITA. Only strictly alimurgic taxa were chosen, excluding casual alien and cultivated ones. The collected data come from an archive of 358 texts (books and scientific articles) from 1918 to date, chosen with appropriate criteria. For each taxon, the part of the plant used, the method of use, the chorotype, the biological form and the regional distribution in Italy were considered. The 1103 taxa of edible flora already entered in the database equal 13.09% of Italian flora. The most widespread family is that of the Asteraceae (20.22%); the most widely used taxa are Cichorium intybus and Borago officinalis. The not homogeneous regional distribution of WEPs (maximum in the south and minimum in the north) has been interpreted. Texts published reached its peak during the 2001–2010 decade. A database for Italian WEPs is important to have a synthesis and to represent the richness and Citation: Paura, B.; Di Marzio, P.; complexity of this knowledge, also in light of its potential for cultural enhancement, as well as its Salerno, G.; Brugiapaglia, E.; Bufano, applications for the agri-food system.
    [Show full text]
  • Plant Field Guide
    2 PICKLEWEED GLASSWORT CORDGRASS JAUMEA BATIS Field Guide 9 PICKLEWEED Amaranth Family 3 kinds, 2 examples CORDGRASS Grass Family 1 Pickleweed Sarcocornia pacifica Spartina foliosa Glasswort Arthrocnemum subterminalis 2 HABITAT: Growns in the low marsh where the HABITAT: Found throughout the salt marsh. roots are continually bathed in ocean water. APPEARANCE: Stems look like a chain of small APPEARANCE: Look for a tall grass which is pickles. higher than the other plants in the salt marsh. REPRODUCTION: The flowers of all pickleweeds REPRODUCTION: All grasses are wind pollinated. are pollinated by the wind. The small flowers are Look for straw colored spikes of densely packed hard to see because they have no colorful petals flowers. Male flowers will have pollen and the female flowers will show graceful waving stigmas to ADAPTATION TO SALT: Pickleweeds are some of catch the pollen. the many marsh plants that use salt storage (they are accumulators). Also called succulents, these ADAPTATION TO SALT: All the salt marsh plants are swollen with the stored salty water. grasses are salt excreters using special pores to When the salt concentration becomes too high the push out droplets of salty water. Look on the grass cells will die. blades for salt crystals. See sea lavender. ECOLOGICAL RELATIONSHIPS: Frequently the ECOLOGICAL RELATIONSHIPS: Home for the most common plants in the marsh, they provide endangered bird, the Light-footed Clapper Rail. shelter and food for invertebrates. Belding’s A spider lives its whole life inside the blades. Savannah Sparrows build their nests in the Important food for grazing animals. glasswort. BATIS or SALTWORT Saltwort Family Batis maritima HABITAT: Most frequently found in the low marsh.
    [Show full text]
  • Globalna Strategija Ohranjanja Rastlinskih
    GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8)
    [Show full text]
  • Alien Plants in Temperate Weed Communities: Prehistoric and Recent Invaders Occupy Different Habitats
    Ecology, 86(3), 2005, pp. 772±785 q 2005 by the Ecological Society of America ALIEN PLANTS IN TEMPERATE WEED COMMUNITIES: PREHISTORIC AND RECENT INVADERS OCCUPY DIFFERENT HABITATS PETR PYSÏ EK,1,2,5 VOJTEÏ CH JAROSÏÂõK,1,2 MILAN CHYTRY ,3 ZDENEÏ K KROPA CÏ ,4 LUBOMÂõR TICHY ,3 AND JAN WILD1 1Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 PruÊhonice, Czech Republic 2Department of Ecology, Faculty of Science, Charles University, VinicÏna 7, CZ-128 01 Praha 2, Czech Republic 3Department of Botany, Masaryk University, KotlaÂrÏska 2, CZ-611 37 Brno, Czech Republic 4SlavõÂkova 16, CZ-130 00 Praha 3, Czech Republic Abstract. Variables determining the number of native and alien plants on arable land in Central Europe are identi®ed. Species richness of 698 samples of weed ¯oras recorded in the Czech Republic in plots of a standard size of 100 m2 in 1955±2000 was studied in relation to altitudinally based ¯oristic region, soil type, type of cultivated crop, climatic variables, altitude, year of the record, crop cover and height, and human population density in the region. Vascular plant species were classi®ed into native and alien, the latter divided in archaeophytes, introduced before AD 1500, and neophytes, introduced after this date. The use of minimal adequate models in the analysis of covariance allowed determination of the net effects of mutually correlated environmental variables. Models for particular species groups explained 33±48% of variation in species numbers and 27±51% in propor- tions; however, explanatory variables affected native species, archaeophytes, and neophytes differently.
    [Show full text]
  • Biodiverse Master
    Montane, Heath and Bog Habitats MONTANE, HEATH AND BOG HABITATS CONTENTS Montane, heath and bog introduction . 66 Opportunities for action in the Cairngorms . 66 The main montane, heath and bog biodiversity issues . 68 Main threats to UK montane, heath and bog Priority species in the Cairngorms . 72 UK Priority species and Locally important species accounts . 73 Cairngorms montane, heath and bog habitat accounts: • Montane . 84 • Upland heath . 87 • Blanket bog . 97 • Raised bog . 99 ‘Key’ Cairngorms montane, heath and bog species . 100 65 The Cairngorms Local Biodiversity Action Plan MONTANE, HEATH AND BOG INTRODUCTION Around one third of the Cairngorms Partnership area is over 600-650m above sea level (above the natural woodland line, although this is variable from place to place.). This comprises the largest and highest area of montane habitat in Britain, much of which is in a relatively pristine condition. It contains the main summits and plateaux with their associated corries, rocky cliffs, crags, boulder fields, scree slopes and the higher parts of some glens and passes. The vegeta- tion is influenced by factors such as exposure, snow cover and soil type. The main zone is considered to be one of the most spectacular mountain areas in Britain and is recognised nationally and internationally for the quality of its geology, geomorphology and topographic features, and associated soils and biodiversity. c14.5% of the Cairngorms Partnership area (75,000ha) is land above 600m asl. Upland heathland is the most extensive habitat type in the Cairngorms Partnership area, covering c41% of the area, frequently in mosaics with blanket bog.
    [Show full text]
  • Brassicaceae) in Australia
    Cunninghamia Date of Publication: 26/08/2013 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Reassessment of the invasion history of two species of Cakile (Brassicaceae) in Australia Roger D. Cousens, Peter K. Ades, Mohsen B. Mesgaran and Sara Ohadi Melbourne School of Land & Environment, The University of Melbourne, Victoria, 3010, AUSTRALIA Abstract: In this paper we revisit the invasion history of two species of Cakile in Australia. Cakile edentula subsp. edentula arrived in the mid 19th Century and spread into coastal strandline habitat from the southeast towards the west and to the north; Cakile maritima arrived in the late 19th Century and has replaced Cakile edentula over much of the range. While Cakile edentula is morphologically quite uniform, the great variation within Cakile maritima has confused field ecologists. Using herbarium records we update previous accounts of the spread of the species and report on field surveys that determined their current geographic overlap in Tasmania and in northern New South Wales/southern Queensland. We examine regional morphological variation within Cakile maritima using the national herbaria collections and variation within new population samples. We support previous interpretations that Cakile maritima has been introduced on more than one occasion from morphologically distinct races, resulting in regional variation within Australia and high variability within populations in the south-east. Western Australian populations appear distinct and probably did not initiate those in the east; we consider that eastern populations are likely to be a mix of Cakile maritima subsp. maritima from the Mediterranean and Cakile maritima subsp.
    [Show full text]
  • Review of Coverage of the National Vegetation Classification
    JNCC Report No. 302 Review of coverage of the National Vegetation Classification JS Rodwell, JC Dring, ABG Averis, MCF Proctor, AJC Malloch, JHJ Schaminée, & TCD Dargie July 2000 This report should be cited as: Rodwell, JS, Dring, JC, Averis, ABG, Proctor, MCF, Malloch, AJC, Schaminée, JNJ, & Dargie TCD, 2000 Review of coverage of the National Vegetation Classification JNCC Report, No. 302 © JNCC, Peterborough 2000 For further information please contact: Habitats Advice Joint Nature Conservation Committee Monkstone House, City Road, Peterborough PE1 1JY UK ISSN 0963-8091 1 2 Contents Preface .............................................................................................................................................................. 4 Acknowledgements .......................................................................................................................................... 4 1 Introduction.............................................................................................................................................. 5 1.1 Coverage of the original NVC project......................................................................................................... 5 1.2 Generation of NVC-related data by the community of users ...................................................................... 5 2 Methodology............................................................................................................................................. 7 2.1 Reviewing the wider European scene.........................................................................................................
    [Show full text]