Zat Warna Alami Kayu Tegeran

Total Page:16

File Type:pdf, Size:1020Kb

Zat Warna Alami Kayu Tegeran Teknologi Zat Warna ZAT WARNA TEKSTIL “TEGERAN (M ACLURA COCHINCHINENSIS )" JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET ZAT WARNA TEKSTIL Zat warna sintesis Zat warna yang dibuat dengan reaksi kimia dengan bahan dasar ter arang batu bara atau minyak bumi yang merupakan hasil senyawa turunan hidrokarbon aromatik seperti benzena, naftalena dan antrasena Zat Warna Alami zat warna yang berasal dari bahan-bahan alam pada umumnya dari hasil ekstrak tumbuhan (akar, batang, daun, buah, kulit dan bunga ) atau hewan (lac dyes) KLASIFIKASI ZAT WARNA Berdasarkan Rantai Kimia Indigo Caroteno dyes id Flavonoi Anthocyani ds din Alphanapht Antraquino ho- Di- e dyes hydropyrans quinones Berdasarkan Aplikasinya Mordant Acid dyes dyes Vat Disperse dyes dyes Direct Basic dyes dyes KAYU TEGERAN Kingdom : Plantae Divisi : Magnoliophyta Kelas : Eudicots Ordo : Rosales Family : Moraceae Genus : Maclura Spesies : Maclura cochinchinensis Nama Lokal : soga tegeran (Jawa), tegeran (Jawa), kayu kuning (Jawa) Sinonim : Cudrania javanensis Trecul , Maclura javanica Blume, Cudrania cochinchinensi s (Lour.) Kudo & Masam Deskripsi : Tumbuhan dengan panjang batang dapat mencapai10 m. Permukaan batang kasar dan berduri. Daun tunggal letaknya di atas duri-duri dari cabang. Bunga tunggal kecil terdapat Di ketiak daun atau di ujung batang. Buah berbentuk seperti batu Habitat : Soga tegeran tumbuh di hutan-hutan dataran rendah tropika pada ketinggian ± 100 m dpl. Tumbuhan ini terdapat di Jawa (Barat, Tengah, Timur), Madura, di hutan-hutan Kalimantan dan Sulawesi Manfaat : Soga tegeran dipergunakan sebagai campuran warna soga pada pewarna tekstil dan dipakai pula dalam pengobatan. Kayu tegeran termasuk zat warna soga, Soga adalah zat warna yang memberikan warna coklat atau kekuningan Kayu tegeran menghasilkan warna kuning karena mengandung Tannin Di dalam tumbuh-tumbuhan tannin dapat diperoleh dari batang kayu, kulit kayu, buah, akar maupun daun Tannin Berwarna kekuningan sampai coklat cerah Sangat larut dalam air, alcohol, maupun acetone, tetapi tidak larut dalam pelarut organic yang lain, seperti misalnya : benzene, eter, kloroform, Carbon tetra klorida Proses ekstraksi Potong menjadi ukuran kecil – kecil bagian tanaman yang diinginkan Masukkan potongan-potongan tersebut ke dalam panci. Tambahkan air dengan perbandingan 1:10. Rebus bahan hingga volume air menjadi setengahnya (2,5liter). Saring dengan kasa penyaring larutan hasil proses ekstraksi tersebut untuk memisahkan dengan sisa bahan yang diesktrak (residu)..
Recommended publications
  • Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008
    Comprehensive Coastal Assessment September 2008 Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008 This document may not be re-produced without prior written permission from the Department of Environment and Climate Change (NSW). Department of Environment and Climate Change (NSW) 59-61 Goulburn Street (PO Box A290) Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (information & publications requests) TTY: (02) 9211 4723 Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au Requests for information regarding this document are best directed to: Paul Sheringham Locked Bag 914 North East Branch Environmental Protection and Regulation Division Department of Environment and Climate Change Coffs Harbour NSW 2450 Phone: (02) 6659 8253 The documented may be cited as: Sheringham, P.R., Dr. Benwell, A., Gilmour, P., Graham, M.S., Westaway, J., Weber, L., Bailey, D., & Price, R. (2008). Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast. A report prepared by the Department of Environment and Climate Change for the Comprehensive Coastal Assessment. Department of Environment and Climate Change (NSW), Coffs Harbour, NSW. Editing: P.J. Higgins. Design and layout: Dee Rogers ISBN 978 1 74122 857 1 DECC 2008/316 Printed on recycled paper CCA08 Far North Coast Targeted Vegetation Survey TARGETED VEGETATION SURVEY OF FLOODPLAINS AND LOWER SLOPES ON THE FAR NORTH COAST P.R. Sheringham, Dr. A. Benwell, P. Gilmour, M.S. Graham, J. Westaway, L. Weber, D. Bailey, & R. Price CCA08 SEPTEMBER 2008 CCA08 Far North Coast Targeted Vegetation Survey Credits Paul Sheringham: Botanist and project manager, and responsible for the survey and stratification of sites, data entry, numerical analysis and writing of this report.
    [Show full text]
  • Biogeography, Phylogeny and Divergence Date Estimates of Artocarpus (Moraceae)
    Annals of Botany 119: 611–627, 2017 doi:10.1093/aob/mcw249, available online at www.aob.oxfordjournals.org Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae) Evelyn W. Williams1,*, Elliot M. Gardner1,2, Robert Harris III2,†, Arunrat Chaveerach3, Joan T. Pereira4 and Nyree J. C. Zerega1,2,* 1Chicago Botanic Garden, Plant Science and Conservation, 1000 Lake Cook Road, Glencoe, IL 60022, USA, 2Northwestern University, Plant Biology and Conservation Program, 2205 Tech Dr., Evanston, IL 60208, USA, 3Faculty of Science, Genetics Downloaded from https://academic.oup.com/aob/article/119/4/611/2884288 by guest on 03 January 2021 and Environmental Toxicology Research Group, Khon Kaen University, 123 Mittraphap Highway, Khon Kaen, 40002, Thailand and 4Forest Research Centre, Sabah Forestry Department, PO Box 407, 90715 Sandakan, Sabah, Malaysia *For correspondence. E-mail [email protected], [email protected] †Present address: Carleton College, Biology Department, One North College St., Northfield, MN 55057, USA. Received: 25 March 2016 Returned for revision: 1 August 2016 Editorial decision: 3 November 2016 Published electronically: 10 January 2017 Background and Aims The breadfruit genus (Artocarpus, Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate diver- gence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus, to better understand spatial and tem- poral evolutionary relationships and dispersal patterns in a geologically complex region. Methods To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes.
    [Show full text]
  • Blair's Rainforest Inventory
    Enoggera creek (Herston/Wilston) rainforest inventory Prepared by Blair Bartholomew 28-Jan-02 Botanical Name Common Name: tree, shrub, Derivation (Pronunciation) vine, timber 1. Acacia aulacocarpa Brown salwood, hickory/brush Acacia from Greek ”akakia (A), hê”, the shittah tree, Acacia arabica; (changed to Acacia ironbark/broad-leaved/black/grey which is derived from the Greek “akanth-a [a^k], ês, hê, (akê A)” a thorn disparrima ) wattle, gugarkill or prickle (alluding to the spines on the many African and Asian species first described); aulacocarpa from Greek “aulac” furrow and “karpos” a fruit, referring to the characteristic thickened transverse bands on the a-KAY-she-a pod. Disparrima from Latin “disparrima”, the most unlike, dissimilar, different or unequal referring to the species exhibiting the greatest difference from other renamed species previously described as A aulacocarpa. 2. Acacia melanoxylon Black wood/acacia/sally, light Melanoxylon from Greek “mela_s” black or dark: and “xulon” wood, cut wood, hickory, silver/sally/black- and ready for use, or tree, referring to the dark timber of this species. hearted wattle, mudgerabah, mootchong, Australian blackwood, native ash, bastard myall 3. Acmena hemilampra Broad-leaved lillypilly, blush satin Acmena from Greek “Acmenae” the nymphs of Venus who were very ash, water gum, cassowary gum beautiful, referring to the attractive flowers and fruits. A second source says that Acmena was a nymph dedicated to Venus. This derivation ac-ME-na seems the most likely. Finally another source says that the name is derived from the Latin “Acmena” one of the names of the goddess Venus. Hemilampra from Greek “hemi” half and “lampro”, bright, lustrous or shining, referring to the glossy upper leaf surface.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Check List Lists of Species Check List 11(4): 1718, 22 August 2015 Doi: ISSN 1809-127X © 2015 Check List and Authors
    11 4 1718 the journal of biodiversity data 22 August 2015 Check List LISTS OF SPECIES Check List 11(4): 1718, 22 August 2015 doi: http://dx.doi.org/10.15560/11.4.1718 ISSN 1809-127X © 2015 Check List and Authors Tree species of the Himalayan Terai region of Uttar Pradesh, India: a checklist Omesh Bajpai1, 2, Anoop Kumar1, Awadhesh Kumar Srivastava1, Arun Kumar Kushwaha1, Jitendra Pandey2 and Lal Babu Chaudhary1* 1 Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, 226 001, Lucknow, India 2 Centre of Advanced Study in Botany, Banaras Hindu University, 221 005, Varanasi, India * Corresponding author. E-mail: [email protected] Abstract: The study catalogues a sum of 278 tree species and management, the proper assessment of the diversity belonging to 185 genera and 57 families from the Terai of tree species are highly needed (Chaudhary et al. 2014). region of Uttar Pradesh. The family Fabaceae has been The information on phenology, uses, native origin, and found to exhibit the highest generic and species diversity vegetation type of the tree species provide more scope of with 23 genera and 44 species. The genus Ficus of Mora- such type of assessment study in the field of sustainable ceae has been observed the largest with 15 species. About management, conservation strategies and climate change 50% species exhibit deciduous nature in the forest. Out etc. In the present study, the Terai region of Uttar Pradesh of total species occurring in the region, about 63% are has been selected for the assessment of tree species as it native to India.
    [Show full text]
  • Moraceae of Papua George D. Weiblen
    Moraceae of Papua george d. weiblen Number of Genera and Species The 37 genera of Moraceae have a broad range of inflorescence forms, pollina- tion syndromes, and breeding systems (Datwyler and Weiblen 2004). Most of the 1,100 species are figs (Ficus) known for a unique inflorescence and obligate polli- nation mutualism with fig wasps. In Papua, there are ten genera and 173 described species, dominated by Ficus, with 151 species, and followed by Artocarpus, with seven. Distribution and Habitat Moraceae are distributed from tropical to temperate forests throughout the world but the great majority of species are restricted to tropical rainforest. In New Guinea, the family occurs from the lowlands to cloud forest up to 2,400 m above sea level. Ficus is a prominent member of forest communities throughout the island in terms of local species richness and abundance (Weiblen 1998). About 70% of these species are endemic to the island and alpha diversity is extreme. In a lowland rainforest, for example, it is not uncommon to encounter up to 50 Ficus species within a few hundred hectares. Species turnover at a regional scale, on the other hand, appears to be quite low. In a comparison of four lowland rainforests across the Ramu and Sepik river basins, for instance, at least half of the Ficus species are shared between any two sites, even those separated by 500 km (G.D. Weiblen, unpublished data). The uneven density of collections across the island make it difficult to discern patterns of local endemism but most species appear to be widespread, perhaps related to dispersal by vertebrate frugivores (Dumont et al.
    [Show full text]
  • Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G
    Taxonomy and Conservation Status of Pteridophyte Flora of Sri Lanka R.H.G. Ranil and D.K.N.G. Pushpakumara University of Peradeniya Introduction The recorded history of exploration of pteridophytes in Sri Lanka dates back to 1672-1675 when Poul Hermann had collected a few fern specimens which were first described by Linneus (1747) in Flora Zeylanica. The majority of Sri Lankan pteridophytes have been collected in the 19th century during the British period and some of them have been published as catalogues and checklists. However, only Beddome (1863-1883) and Sledge (1950-1954) had conducted systematic studies and contributed significantly to today’s knowledge on taxonomy and diversity of Sri Lankan pteridophytes (Beddome, 1883; Sledge, 1982). Thereafter, Manton (1953) and Manton and Sledge (1954) reported chromosome numbers and some taxonomic issues of selected Sri Lankan Pteridophytes. Recently, Shaffer-Fehre (2006) has edited the volume 15 of the revised handbook to the flora of Ceylon on pteridophyta (Fern and FernAllies). The local involvement of pteridological studies began with Abeywickrama (1956; 1964; 1978), Abeywickrama and Dassanayake (1956); and Abeywickrama and De Fonseka, (1975) with the preparations of checklists of pteridophytes and description of some fern families. Dassanayake (1964), Jayasekara (1996), Jayasekara et al., (1996), Dhanasekera (undated), Fenando (2002), Herat and Rathnayake (2004) and Ranil et al., (2004; 2005; 2006) have also contributed to the present knowledge on Pteridophytes in Sri Lanka. However, only recently, Ranil and co workers initiated a detailed study on biology, ecology and variation of tree ferns (Cyatheaceae) in Kanneliya and Sinharaja MAB reserves combining field and laboratory studies and also taxonomic studies on island-wide Sri Lankan fern flora.
    [Show full text]
  • CURRICULUM VITAE John Godfrey Conran
    CURRICULUM VITAE John Godfrey Conran BORN 1960, October 13, Brisbane, Queensland DEPENDENTS Divorced, with two children CURRENT APPOINTMENT Senior Lecturer: School of Earth & Environmental Sciences, The University of Adelaide QUALIFICATIONS 1985: Ph.D. Botany, Univ. of Qld 1981: B.Sc. (Hons 1), Botany, Univ. of Qld 1980: B.Sc. Botany and Entomology, Univ. of Qld The undergraduate degree was broad-based, with subjects from the Agriculture and Science Faculties, with majors in Entomology and Botany. I completed subjects including biometrics, biochemistry, chemistry, computer science and geology, in addition to subjects offered by the Agriculture, Botany, Entomology and Zoology Departments. In Honours, I studied systematics and population variation in Banksia oblongifolia Cav. (Proteaceae). My Ph.D. studied the evolution and ecology of the net-veined petaloid monocots in the rainforests at Springbrook, SE Qld. PRIZES AND SCHOLARSHIPS 2011 The University of Adelaide, Executive Dean of Sciences Excellence in Teaching Award for staff with more than five years of teaching experience 1995 The University of Adelaide, Faculty of Science, Dean's Certificate of Merit for Excellence in Teaching 1982–5 Commonwealth Postgraduate Research Award, University of Qld 1981 F.A. Perkins Prize in Entomology, University of Qld 1980–1 Australian National University Vacation Scholarship LANGUAGES I can, with appropriate dictionaries, translate scientific documents written in Latin, French, German, Spanish, Italian, Portuguese and Afrikaans, and to a much lesser extent Russian. SPECIAL INTERESTS AND EXPERTISE Morphological and molecular systematics, palaeobotany, reproductive/pollination biology and community ecology of the Australasian flora; especially petaloid monocotyledons, southern conifers, carnivorous plants and weeds. PROFESSIONAL EXPERIENCE (APPOINTMENTS) 2006– Affiliate of the State Herbarium of South Australia 2004– Member of the Australian Centre for Ecology & Evolutionary Biology 2000– Lecturer C: The Univ.
    [Show full text]
  • Floristic Survey of Vascular Plant in the Submontane Forest of Mt
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 8, August 2019 E-ISSN: 2085-4722 Pages: 2197-2205 DOI: 10.13057/biodiv/d200813 Short Communication: Floristic survey of vascular plant in the submontane forest of Mt. Burangrang Nature Reserve, West Java, Indonesia TRI CAHYANTO1,♥, MUHAMMAD EFENDI2,♥♥, RICKY MUSHOFFA SHOFARA1, MUNA DZAKIYYAH1, NURLAELA1, PRIMA G. SATRIA1 1Department of Biology, Faculty of Science and Technology,Universitas Islam Negeri Sunan Gunung Djati Bandung. Jl. A.H. Nasution No. 105, Cibiru,Bandung 40614, West Java, Indonesia. Tel./fax.: +62-22-7800525, email: [email protected] 2Cibodas Botanic Gardens, Indonesian Institute of Sciences. Jl. Kebun Raya Cibodas, Sindanglaya, Cipanas, Cianjur 43253, West Java, Indonesia. Tel./fax.: +62-263-512233, email: [email protected] Manuscript received: 1 July 2019. Revision accepted: 18 July 2019. Abstract. Cahyanto T, Efendi M, Shofara RM. 2019. Short Communication: Floristic survey of vascular plant in the submontane forest of Mt. Burangrang Nature Reserve, West Java, Indonesia. Biodiversitas 20: 2197-2205. A floristic survey was conducted in submontane forest of Block Pulus Mount Burangrang West Java. The objectives of the study were to inventory vascular plant and do quantitative measurements of floristic composition as well as their structure vegetation in the submontane forest of Nature Reserves Mt. Burangrang, Purwakarta West Java. Samples were recorded using exploration methods, in the hiking traill of Mt. Burangrang, from 946 to 1110 m asl. Vegetation analysis was done using sampling plots methods, with plot size of 500 m2 in four locations. Result was that 208 species of vascular plant consisting of basal family of angiosperm (1 species), magnoliids (21 species), monocots (33 species), eudicots (1 species), superrosids (1 species), rosids (74 species), superasterids (5 species), and asterids (47), added with 25 species of pterydophytes were found in the area.
    [Show full text]
  • MORACEAE Genera Other Than FICUS (C.C
    Flora Malesiana, Series I, Volume 17 / Part 1 (2006) 1–152 MORACEAE GENera OTHer THAN FICUS (C.C. Berg, E.J.H. Corner† & F.M. Jarrett)1 FOREWORD The following treatments of Artocarpus, Hullettia, Parartocarpus, and Prainea are based on the monograph by Jarrett (1959–1960) and on the treatments she made for this Flora in cooperation with Dr. M. Jacobs in the 1970s. These included some new Artocarpus species described in 1975 and the re-instatement of A. peltata. Artocarpus lanceifolius subsp. clementis was reduced to the species, in A. nitidus the subspe- cies borneensis and griffithii were reduced to varieties and the subspecies humilis and lingnanensis included in var. nitidus. The varieties of A. vrieseanus were no longer recognised. More new Malesian species of Parartocarpus were described by Corner (1976), Go (1998), and in Artocarpus by Kochummen (1998). A manuscript with the treatment of the other genera was submitted by Corner in 1972. Numerous changes to the taxonomy, descriptions, and keys have been made to the original manuscripts, for which the present first author is fully responsible. References: Corner, E.J.H., A new species of Parartocarpus Baillon (Moraceae). Gard. Bull. Singa- pore 28 (1976) 183–190. — Go, R., A new species of Parartocarpus (Moraceae) from Sabah. Sandaka- nia 12 (1998) 1–5. — Jarrett, F.M., Studies in Artocarpus and allied genera I–V. J. Arnold Arbor. 50 (1959) 1–37, 113–155, 298–368; 51 (1960) 73–140, 320–340. — Jarrett, F.M., Four new Artocarpus species from Indo-Malesia (Moraceae). Blumea 22 (1975) 409–410. — Kochummen, K.M., New species and varieties of Moraceae from Malaysia.
    [Show full text]
  • 1 F F F F Diversity of Vascular Plants in the Floodplain Vegetation of Trang River Basin F ABSTRACT
    5 O-03 !"# $# #%"# Diversity of vascular plants in the floodplain vegetation of Trang River Basin #" <# = >* 1 " # $ # 1 Ponlawat Pattarakulpisutti*1 and Kitichate Sridith1 #% 0 ""12 32"4"567 8764 90 "322:7 56"64 ; $ $326 ; 6 .. 2551 90$326> 6? .. 2553 7 8A;46 6 63 163 6 $ 56;46 66C6 3"DE6 8 6 $ (4.9%) 3" Eudicots 95 6 $ (58.3%) 3" Magnoliids 2 6 $ (1.2%) " 3" Monocots 58 6 $ (35.6%) ;;46 6 3 766;46C6 364 55 6 $ " 37 108 6 $ 56" 364;46$AC6 3T$ 38 6 $ " 3"T 17 6 $ 56" 37;46 C6 3T$ 25 6 $ " 3"T 83 6 $ =#C: 764 90, "64, 32"4", "" > ABSTRACT The study on diversity of the vascular plants in the Trang River Basin, peninsular Thailand was carried out from November 2008 to February 2010. One hundred and sixty three species were recorded. These species belong to 8 species (4.9%) of Ferns, 95 species (58.3%) of Eudicots, 2 species (1.2%) of Magnoliids and 58 species (35.6%) of Monocots. They are composed of 55 species of aquatic plants and 108 species of terrestrial plants. The aquatic plants could be divided into 38 species of annual plants and 17 species of perennial plants. The terrestrial plants could be divided into 25 species of annual plants and 83 species of terrestrial plants. Keywords: floodplain, Trang River Basin, vascular plants, biodiversity *Corresponding author: [email protected] 1 ?>8k 3 "1"6 6 (PSU) > 8 .1"6 6 2.$5m ;.1" 90112 1Prince of Songkla University Herbarium (PSU), Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 1 5 764 90327 rst64
    [Show full text]
  • Phylogeny, Biogeography, and Breeding System Evolution in Moraceae
    Phylogeny, biogeography, and breeding system evolution in Moraceae 2019SACLS205 : Thèse de doctorat de l'Université Paris-Saclay NNT préparée à l’Université Paris-Sud ED n°567 Sciences du végétal : du gène à l’écosystème Spécialité de doctorat : Biologie Thèse présentée et soutenue à Orsay, le 16/07/2019, par Qian Zhang Composition du Jury : Tatiana Giraud Directrice de Recherche, CNRS (ESE) Pr é sident e Mathilde Dufaÿ Professeur, Université de Montpellier (CEFE) Rapporteur Jean-Yves Rasplus Directeur de Recherche, INRA (CBGP) Rapporteur Florian Jabbour Maître de Conférences, Muséum national d’Histoire Examinateur naturelle (ISYEB) Jos Käfer Chargé de Recherche, Université Lyon I (ESE) Examinateur Hervé Sauquet Maître de Conférences, Université Paris-Sud (ESE) Directeur de thèse ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my supervisors Dr. Hervé Sauquet and Dr. Renske Onstein, for their patience and help throughout my PhD journey. Their advice on both research as well as my career have been invaluable. I still remember when I introduced my idea, which finally became chapter III of my thesis, to Hervé at the very beginning. This idea has been elaborated and finally become a PhD thesis with help from many people I will mention below. I would also like to extend my deepest appreciation to my thesis committee, without whose help I will not improve so much in my studies. They are Dr. Thomas Couvreur, Dr. Elliot Gardner, Dr. Damien Hinsinger, Prof. Sophie Nadot, Prof. Jacqui Shykoff and Prof. Nina Rønsted. I am extremely grateful to my jury of defense: Prof. Mathilde Dufaÿ, Dr. Jean-Yves Rasplus, Prof.
    [Show full text]