Phylogeny, Biogeography, and Breeding System Evolution in Moraceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytotaxa, Zamia Incognita (Zamiaceae): the Exciting Discovery of a New Gymnosperm
Phytotaxa 2: 29–34 (2009) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2009 • Magnolia Press ISSN 1179-3163 (online edition) Zamia incognita (Zamiaceae): the exciting discovery of a new gymnosperm from Colombia ANDERS J. LINDSTRÖM1 & ÁLVARO IDÁRRAGA2 1Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250 Thailand 2Universidad de Antioquia, Herbario Universidad de Antioquia (HUA), Medellín, Colombia Abstract Colombia is home to the majority of known South American species of Zamia (Zamiaceae). Although Zamia is now the only recognised genus of extant Cycadales in South America, it shows some complex ecological adaptations that have resulted in several evolutionarily divergent sections within the genus. The recent publication of Flora de Colombia listed 16 species, of which seven are endemic and five were newly described in the very same treatment. Although this treatment was current at the time of publication, recent collections and additional material of little-known species have made an update and further clarification necessary. A new species, Zamia incognita is described here and its relationships are discussed. Key words: Colombia, cycads, gymnosperms, Zamia Introduction The classification of Zamia Linnaeus (1763: 1659), a genus of about 57 species of mainly South and Central American cycads, is still incomplete with new species still to be discovered and described. The relationships are not very well-studied and there are few classifications at the subgeneric level (Schuster, 1932). Most species have been described individually by various authors and not as part of a larger taxonomic treatment or revision. Because of the inaccessibility of many habitats, there are very few specimens of South American species. -
The Chocó-Darién Conservation Corridor
July 4, 2011 The Chocó-Darién Conservation Corridor A Project Design Note for Validation to Climate, Community, and Biodiversity (CCB) Standards (2nd Edition). CCB Project Design Document – July 4, 2011 Executive Summary Colombia is home to over 10% of the world’s plant and animal species despite covering just 0.7% of the planet’s surface, and has more registered species of birds and amphibians than any other country in the world. Along Colombia’s northwest border with Panama lies the Darién region, one of the most diverse ecosystems of the American tropics, a recognized biodiversity hotspot, and home to two UNESCO Natural World Heritage sites. The spectacular rainforests of the Darien shelter populations of endangered species such as the jaguar, spider monkey, wild dog, and peregrine falcon, as well as numerous rare species that exist nowhere else on the planet. The Darién is also home to a diverse group of Afro-Colombian, indigenous, and mestizo communities who depend on these natural resources. On August 1, 2005, the Council of Afro-Colombian Communities of the Tolo River Basin (COCOMASUR) was awarded collective land title to over 13,465 hectares of rainforest in the Serranía del Darién in the municipality of Acandí, Chocó in recognition of their traditional lifestyles and longstanding presence in the region. If they are to preserve the forests and their traditional way of life, these communities must overcome considerable challenges. During 2001- 2010 alone, over 10% of the natural forest cover of the surrounding region was converted to pasture for cattle ranching or cleared to support unsustainable agricultural practices. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Ecología Alimentaria Del Tepezcuintle (Cuniculus Paca) En Áreas Conservadas Y Transformadas De La Selva Lacandona, Chiapas, México
Revista Mexicana de Biodiversidad Rev.Mex.Biodivers. 89 (2018): 507-515 Ecología Ecología alimentaria del tepezcuintle (Cuniculus paca) en áreas conservadas y transformadas de la Selva Lacandona, Chiapas, México Foraging ecology of lowland paca (Cuniculus paca) in preserved and transformed areas of the Lacandon rainforest, Chiapas, Mexico Yuriana Martínez-Ceceñas a, *, Eduardo J. Naranjoa, Yann Hénaut b y Arturo Carrillo-Reyes c a El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, 29290 San Cristóbal de Las Casas, Chiapas, México b El Colegio de la Frontera Sur, Avenida Centenario km 5.5, 424, 77014 Chetumal, Quintana Roo, México c Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 47, Caleras Maciel, 29000 Tuxtla Gutiérrez, Chiapas, México *Autor para correspondencia: [email protected] (Y. Martínez-Ceceñas) Recibido: 10 febrero 2017; aceptado: 24 noviembre 2017 Resumen Conocer el efecto de la fragmentación del hábitat y las perturbaciones antrópicas es primordial para comprender los procesos de adaptación de las especies y su persistencia en los ecosistemas. Una especie adaptable a ambientes transformados es el tepezcuintle, Cuniculus paca. En este trabajo se evaluó la actividad de forrajeo, la composición y las variaciones en la dieta del tepezcuintle en 2 sitios: uno conservado y otro transformado en la Selva Lacandona, Chiapas, México. Se caracterizaron y monitorearon por fototrampeo 57 sitios de alimentación (“comederos”), en 31 de los cuales se confirmó el consumo de frutos. Comparando los sitios se encontraron diferencias significativas en el estado y cantidad de frutos y la cobertura del dosel. La dieta del tepezcuintle incluyó frutos de 20 especies de árboles, donde Ceiba pentandra y Castilla elastica fueron nuevos registros para la especie. -
Pollination Biology of Mesogyne Insignis Engler in the Amani Nature Reserve, East Usambara Mountain Forests Tanzania
Pollination biology of mesogyne insignis engler in the amani nature reserve, East Usambara mountain forests Tanzania Moses Iwatasia Olotu Master of Science in Integrated Environmental Management University of Dar es Salaam, College of Natural and Applied Science, 2009. Fig pollination is a well-known scenario of obligate mutualism involving specialized fig wasp (Agaonidae) and Ficus species (Moraceae). However, pollination biology and possible pollination are poorly understood in Mesogyne (Castilleae), the recently identified sister group of Ficus. Furthermore, little is known about the effects of forest fragmentation on reproductive success of M.insignis and diversity of pollinators. This study was carried out in East Usambara Mountain forests in 2008 and the major aim was to investigate on the pollination biology of Mesogyne insignis. The specific objectives were (i) to identify possible pollinators of M. insignis, (ii) to compare the abundance of pollinators between forest fragments and intact forests and (iii) to evaluate the effect of pollinators on reproduction of M. insignis. Visual observation, insect trapping and pollinator exclusion experiments were the methods used. Diversity of Arthroped orders trapped from intact forest (10) was significantly higher than those from forest fragments (8) (P˂ 0.001). most of the morphotype in the genus Megachile and family Vespidae were observed actively feeding on M. insignis flower parts and are considered to be potential pollinators. Additionally, thrips, the symbionts of M. insignis flower seems to be responsible for pollination of this species as revealed from fine mesh exclusion experiment. Overall, the total number of fruits set was significantly higher diversity and abundance of potential pollinators in an intact forest. -
Broussonetia Papyrifera Moraceae (L.) Vent
Broussonetia papyrifera (L.) Vent. Moraceae paper mulberry LOCAL NAMES Burmese (malaing); English (paper mulberry tree,paper mulberry); French (mûrier à papier,murier a papier); German (papiermaulbeerbaum); Hindi (kachnar); Indonesian (saeh); Italian (gelso papirifero del giappone,moro della China); Japanese (aka,kodzu,kename kowso,pokasa,aka kowso); Portuguese (amoreira do papel); Spanish (morera de papel); Tongan (hiapo); Trade name (paper mulberry) BOTANIC DESCRIPTION B. papyrifera is a small tree or shrub which grows naturally in Asian and Male inflorescences (Gerald D. Carr, pacific countries (Thailand, China, Myanmar, Laos, Japan, Korea). It University of Hawaii, grows to 21 m high and 70 cm dbh, with a round and spreading crown. www.forestryimages.org) The spreading, grey-brown branches, marked with stipular scars are brittle, making it susceptible to wind damage. The bark is light grey, smooth, with shallow fissures or ridges. Leaves alternate or sub-opposite, mulberry-like and papery. Some leaves are distinctly deep lobed, while others are un-lobed and several different shapes of leaves may appear on the same shoot. Petioles are 3-10 cm long while stipules are 1.6-2.0 cm long. Male flower 3.5-7.5 cm long, yellowish-white, with pendulous catkin-like spikes; perianth campanulate, hairy, 4-fid, and its segments are valvate. Habit at Keanae Arboretum Maui, Hawaii (Forest & Kim Starr) Female flowers in rounded clusters, globose pedunculate heads about 1.3 cm in diameter; persistent, hairy, clavate bracts subtend flowers. Fruit shiny-reddish, fleshy, globose and compound with the achenes 1-2 cm long and wide hanging on long fleshy stalks. -
Corner, Mainly Melanesian
New species of Streblus and Ficus (Moraceae) E.J.H. Corner Botany School, University of Cambridge, U.K. Summary New — Lour. S. Taxa. Streblus sect. Protostreblus, sect. nov., with the single species ascendens sp. nov. (Solomon Isl.); S. sclerophyllus sp. nou. (sect. Paratrophis, New Caledonia). Ficus F. cristobalensis var. malaitana var. nov. (subgen. Pharmacosycea, Solomon Isl.); hesperia sp. nov. (sect. Solomon servula and Sycidium, Isl.); F. sp. nov. F. lapidaria sp. nov. (sect. Adenosperma, New Guinea); F. novahibernica and F. cryptosyce (sect. Sycocarpus, New Ireland, New Guinea). Notes are given on Streblus pendulinus, S. solomonensis, Ficus illiberalis, F. subtrinervia (Solomon Isl.), F. adenosperma (Rotuma), and F. subcuneata with a key to its allies. Streblus Lour. sect. Protostreblus sect. nov. Folia spiraliter disposita; lamina ovata v. subcordata, costis basalibus ad mediam laminam elongatis, intercostis transversalibus numerosis. Inflorescentia ut in sect. Paratro- phis; embryo radicula incumbenti elongata, cotyledonibus foliaceis subincrassatis con- duplicatis. Cystolitha nulla. — Typus: S. ascendens, Insulis Solomonensibus. The structural peculiarity of this new section lies in the combinationof the Moras-like leafwith the reproductive characters of Streblus sect. Paratrophis. The ovate subcordate lamina with prominent basal veins and numerous transverse intercostals is unknown in Streblus. the rest of The lax spiral arrangement of the leaves is clearly antecedent to the distichous which also the of the prevails in rest genus. In various Moraceae, such as Ficus, Artocarpus, Maclura, and Broussonetia in the broad sense in which I understand them (Corner, 1962), the transition from the spiral arrangement to the distichous is manifest as the twig becomes more horizontal in its growth and develops applanate, in contrast with Thus this section be of the ascending, foliage. -
The Synstigma Turns the Fig Into a Large Flower Simone P
The synstigma turns the fig into a large flower Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira To cite this version: Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira. The synstigma turns the fig into a large flower. Botanical Journal of the Linnean Society, Linnean Society of London, In press, 10.1093/botlinnean/boaa061. hal-02981678 HAL Id: hal-02981678 https://hal.archives-ouvertes.fr/hal-02981678 Submitted on 28 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The synstigma turns the fig into a large flower Simone P. Teixeira1,*,, Marina F. B. Costa1,2, João Paulo Basso-Alves2,3, Finn Kjellberg4 And Rodrigo A. S. Pereira5 1Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040–903, Ribeirão Preto, SP, Brazil 2PPG em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, 13083–970, Campinas, SP, Brazil 3Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro, DIPEQ, Rua Pacheco Leão, 915, 22460- 030, Rio de Janeiro, RJ, Brazil 4CEFE UMR 5175, CNRS—Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, F-34293 Montpellier Cédex 5, France 5Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. -
(Moraceae) and the Position of the Genus Olmedia R. & P
On the wood anatomy of the tribe “Olmedieae” (Moraceae) and the position of the genus Olmedia R. & P. Alberta+M.W. MennegaandMarijke Lanzing-Vinkenborg Instituut voorSystematische Plantkunde,Utrecht SUMMARY The structure ofthe wood ofthe Olmedia genera Castilla, Helicostylis, Maquira, Naucleopsis, , Perebeaand Pseudolmedia,considered to belongin the Olmedieae (cf. Berg 1972) is described. The in anatomical between the is and it is hard to diversity structure genera small, distinguish Maquira, Perebea and Pseudolmedia from each other. Castilla can be recognized by its thin- walled and wide-lumined fibres, Helicostylis by its parenchyma distribution, Naucleopsis (usually) by its more numerous vessels with a smaller diameter. A more marked difference is shown the Olmedia with banded instead of by monotypic genus apotracheal parenchyma the aliform confluent-banded of the other paratracheal to parenchyma genera. Septate which characteristic for the other - of fibres, are genera some species Helicostylis excepted - are nearly completely absent in Olmedia. This structural difference is considered as an in of the exclusion Olmedia from tribe Olmedieae argument favour of the (Berg 1977). 1. INTRODUCTION The structure of the secondary wood of the Moraceae shows in comparison to that of other families rather uniform This is true many a pattern. particularly for most genera of the tribe Olmedieae. Differences are mainly found in size and numberof vessels, absence of fibres, and in the distribu- or presence septate tion and quantity ofaxial parenchyma. Besides the description of the Moraceae have Tippo’s in Metcalfe& Chalk’s Anatomy ofthe Dicotyledons (1950), we the and of the American (1938) account of family a treatment genera by Record & Hess (1940). -
On the Origin of Hops: Genetic Variability, Phylogenetic Relationships, and Ecological Plasticity of Humulus (Cannabaceae)
ON THE ORIGIN OF HOPS: GENETIC VARIABILITY, PHYLOGENETIC RELATIONSHIPS, AND ECOLOGICAL PLASTICITY OF HUMULUS (CANNABACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY MAY 2014 By Jeffrey R. Boutain DISSERTATION COMMITTEE: Will C. McClatchey, Chairperson Mark D. Merlin Sterling C. Keeley Clifford W. Morden Stacy Jørgensen Copyright © 2014 by Jeffrey R. Boutain ii This dissertation is dedicated to my family tree. iii ACKNOWLEDGEMENTS There are a number of individuals to whom I am indebted in many customs. First and foremost, I thank my committee members for their contribution, patience, persistence, and motivation that helped me complete this dissertation. Specifically, thank you Dr. Will McClatchey for the opportunity to study in a botany program with you as my advisor and especially the encouragement to surf plant genomes. Also with great gratitude, thank you Dr. Sterling Keeley for the opportunity to work on much of this dissertation in your molecular phylogenetics and systematics lab. In addition, thank you Dr. Mark Merlin for numerous brainstorming sessions as well as your guidance and expert perspective on the Cannabaceae. Also, thank you Dr. Cliff Morden for the opportunity to work in your lab where the beginnings of this molecular research took place. Thank you Dr. Jianchu Xu for welcoming me into your lab group at the Kunming Institute of Botany, Chinese Academy of Sciences (CAS) and the opportunity to study the Yunnan hop. In many ways, major contributions towards the completion of this dissertation have come from my family, and I thank you for your unconditional encouragement, love, and support. -
The Castilleae, a Tribe of the Moraceae, Renamed and Redefined Due to the Exclusion of the Type Genus Olmedia From
Bot. Neerl. Ada 26(1), February 1977, p. 73-82, The Castilleae, a tribe of the Moraceae, renamed and redefined due to the exclusion of the type genus Olmedia from the “Olmedieae” C.C. Berg Instituut voor Systematische Plantkunde, Utrecht SUMMARY New data on in the of Moraceae which known cladoptosis group was up to now as the tribe Olmedieae led to a reconsideration ofthe position ofOlmedia, and Antiaropsis , Sparattosyce. The remainder ofthe tribe is redefined and is named Castilleae. 1. INTRODUCTION The monotypic genus Olmedia occupies an isolated position within the neo- tropical Olmedieae. Its staminate flowers have valvate tepals, inflexed stamens springing back elastically at anthesis, and sometimes well-developed pistil- lodes. Current anatomical research on the wood of Moraceae (by Dr. A. M. W. Mennega) and recent field studies (by the present author) revealed that Olmedia is also distinct in anatomical characters of the wood and because of the lack of self-pruning branches. These differences between Olmedia and the other representatives of the tribe demand for reconsideration of the position of the genus and the deliminationof the tribe. The Olmedia described The genus was by Ruiz & Pavon (1794). original description mentioned that the stamens bend outward elastically at anthesis. Nevertheless it was placed in the “Artocarpeae” (cf. Endlicher 1836-1840; Trecul 1847), whereas it should have been placed in the “Moreae” on ac- of of count the characters the stamens which were rather exclusively used for separating the two taxa. Remarkably Trecul (1847) in his careful study on the “Artocarpeae” disregarded the (described) features of the stamens. -
Bengal Slow Loris from Madhupur National Park, Bangladesh
47 Asian Primates Journal 9(1), 2021 EXTIRPATED OR IGNORED? FIRST EVIDENCE OF BENGAL SLOW LORIS Nycticebus bengalensis FROM MADHUPUR NATIONAL PARK, BANGLADESH Tanvir Ahmed1* and Md Abdur Rahman Rupom2 1 Wildlife Research and Conservation Unit, Nature Conservation Management (NACOM), Dhaka 1212, Bangladesh. E-mail: [email protected] 2 Holding No. 1230, Masterpara, Madhupur 1996, Tangail, Dhaka, Bangladesh. E-mail: [email protected] * Corresponding author ABSTRACT We report the first verifiable record of globally Endangered Bengal Slow LorisNycticebus bengalensis in Madhupur National Park, an old-growth natural Sal Shorea robusta forest in north-central Bangladesh. On 21 October 2020, we sighted a male N. bengalensis in Madhupur National Park by chance while recording videos on the forest’s biodiversity. For three decades, N. bengalensis was believed to have been extirpated from the Sal forests in Bangladesh, in the absence of a specialized nocturnal survey. Given the alarming state of extreme habitat alterations due to human activities and other threats to N. bengalensis in Bangladesh, an assessment of its distribution and population status in Sal forests is crucial for conservation planning. Keywords: Distribution, Nycticebus bengalensis, slow loris, strepsirrhine, tropical moist deciduous forest Bengal Slow Loris Nycticebus bengalensis author encountered an adult male N. bengalensis in (Lacépède) is an arboreal strepsirrhine primate native a roadside bamboo Bambusa sp. clump near Lohoria to Bangladesh, north-eastern India, Bhutan, Myanmar, Deer Breeding Centre at Lohoria Beat (24°41’44.7”N, China, Thailand, Cambodia, Lao PDR and Viet Nam 90°06’21.1”E; Fig. 2). A group of Macaca mulatta (Nekaris et al., 2020).