Solubility Product Constant

Total Page:16

File Type:pdf, Size:1020Kb

Solubility Product Constant SOLUBILITY PRODUCT CONSTANT Tues March 26, 2013 Today we will: • Check homework • Learn how to write the expression for the solubility product constant • Learn how to calculate concentrations of ions using the solubility product constant. 1 Answers to Solubility Product Constant Homework, section I +2 ­ 1. Mg(OH)2 (s) ↔ Mg (aq) + 2OH (aq) +2 ­2 2. CaCO3 (s) ↔ Ca (aq) + CO3 (aq) +2 ­ 3. PbCl2 (s) ↔ Pb (aq) + 2Cl2 (aq) + ­2 4. Ag2CO3 (s) ↔ 2Ag (aq) + CO3 (aq) +2 ­2 5. SrSO4 (s) ↔ Sr (aq) + SO4 (aq) +2 ­2 6. FeC2O4 (s) ↔ Fe (aq) + C2O4 (aq) +2 ­ 7. Zn(OH)2 (s) ↔ Zn (aq) + 2OH (aq) 8. CuSCN (s) ↔ Cu+(aq) + SCN­ (aq) +3 ­2 9. Al2(SO4)3 (s) ↔ 2Al (aq) + 3SO4 (aq) +2 ­ 10. Ba(NO3)2 (s) ↔ Ba (aq) + 2NO3 (aq) +2 ­ 11. Ni(OH)2 (s) ↔ Ni (aq) + 2OH (aq) +2 ­3 12. Ca3(PO4)2 (s) ↔ 3Ca (aq) + 2PO4 (aq) 13. AgSCN (s) ↔ Ag+(aq) + SCN­ (aq) +2 ­ 14. BaF2 (s) ↔ Ba (aq) + 2F (aq) +2 ­2 15. PbC2O4 (s) ↔ Pb (aq)+ C2O4 (aq) + ­2 16. Ag2CrO4 (s) ↔ 2Ag (aq) + CrO4 (aq) +2 –2 17. MgCO3 (s) ↔ Mg (aq) + CO3 (aq) 18. ZnS (s) ↔ Zn+2(aq) + S­2 (aq) +3 ­3 19. NiPO4 (s) ↔ Ni (aq)+ PO4 (aq) +3 ­ 20. Al(OH)3 (s) ↔ Al (aq) + 3OH (aq) 2 EQUILIBRIUM • Occurs when the forward and reverse reactions happen at an equal rate: there is no net change • Based on a specific temperature and pressure • The total amount of particles remains the same and therefore so does the concentration • • The concentration of a substance is denoted by the use of brackets around the formula [H2] • • The reaction is dynamic ‐ in constant motion 3 Dissolution and precipitation • Remember: ionic substances separate into their ions in solution and become uniformly distributed in the sol’n • • Dissolution‐ the process in which an ionic solid dissolves in a polar liquid • • Can write an equation for dissociation • • Only dissociated substances are written as ions in equations • Must balance numerically and electrically 4 • Precipitation‐ the process in which ions leave a sol’n and regenerate an ionic solid • • Precipitate‐ solid formed • • Dissolution and precipitation are opposite process • • Solubility equilibrium: rate of dissolution= rate of precipitation 5 6 7 8 1. magnesium hydroxide 11. nickel (II) hydroxide 2. calcium carbonate 12. calcium phosphate 3. plumbous chloride 13. silver thiocyanate 4. silver carbonate 14. barium fluoride 5. strontium sulfate 15. plumbous oxalate 6. ferrous oxalate 16. silver chromate 7. zinc hydroxide 17. magnesium carbonate 8. cuprous thiocyanate 18. zinc sulfide 9. aluminum sulfate 19. nickel (III) phosphate 10. barium nitrate 20. aluminum hydroxid 9 10 11 1. magnesium hydroxide 11. nickel (II) hydroxide 2. calcium carbonate 12. calcium phosphate 3. plumbous chloride 13. silver thiocyanate 4. silver carbonate 14. barium fluoride 5. strontium sulfate 15. plumbous oxalate 6. ferrous oxalate 16. silver chromate 7. zinc hydroxide 17. magnesium carbonate 8. cuprous thiocyanate 18. zinc sulfide 9. aluminum sulfate 19. nickel (III) phosphate 10. barium nitrate 20. aluminum hydroxid 12 12. At 18°C, the concentration of lead ions in a saturated solution ­6 of plumbous oxalate is 5.23 x 10 M. What is the value of Ksp for plumbous oxalate? 13 14. At 25°C, the concentration of silver ions in a saturated solution of silver bromide is 7.07 x 10­7M. What is the value of Ksp for silver bromide? 14 15 8. What will be the equilibrium concentrations of silver and chromate ions in a saturated solution of ­12 silver chromate? (Ksp = 1.1 x 10 ) 16.
Recommended publications
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • United States Patent to 11 4,012,839 Hill 45 Mar
    United States Patent to 11 4,012,839 Hill 45 Mar. 22, 1977 (54) METHOD AND COMPOSITION FOR TREATING TEETH OTHER PUBLICATIONS 75) Inventor: William H. Hill, St. Paul, Minn. Dental Abstracts, "Silver Nitrate Treatment of Proxi (73) Assignee: Peter Strong & Company, Inc., mal Caries in Primary Molars', p. 272, May 1957. Portchester, N.Y. Primary Examiner-Robert Peshock (22 Filed: Nov. 26, 1973 Attorney, Agent, or Firm-Thomas M. Meshbesher (21) Appl. No.: 418,997 57 ABSTRACT 52 U.S. Cl. ................................... 32/15; 424/129; In the well-known technique of disinfecting caries 424/210 infected or potentially caries-infected dental tissue with 51 int. Cl”.......................................... A61K 5/02 silver nitrate, silver thiocyanate or its complexes have 58 Field of Search ............ 424/290, 132, 129, 49, been substituted for silver nitrate with excellent disin 424/54; 32/15 fecting results and lowered side effects, e.g., with low 56) References Cited ered toxicity toward dental tissues and mouth mem UNITED STATES PATENTS branes and less blackening of exposed portions of the teeth. 1,740,543 12/1929 Gerngross .......................... 424/129 2,981,640 4/1961 Hill ................................. 171138.5 3,421,222 1/1969 Newman ................................ 32/15 16 Claims, No Drawings 4,012,839 1 2 and potassium or barium thiocyanate as a relatively METHOD AND COMPOSITION FOR TREATING non-irritating disinfectant is disclosed. TEETH Silver thiocyanate (AgSCN) is known to be both bactericidal and relatively light stable; see U.S. Pat. No. FIELD OF THE INVENTION 2,981,640 (Hill), issued Apr. 25, 1961. The Hill patent This invention relates to a method for treating mam teaches the use of AgSCN or mixtures thereof with malian dental tissue with a bactericidal amount of a other thiocyanates to treat or sterilize cloth articles silver salt.
    [Show full text]
  • North East Region Schools' Analyst 2011
    ROYAL SOCIETY OF CHEMISTRY ANALYTICAL DIVISION NE Region SCHOOLS’ ANALYST COMPETITION 2011 Regional Heat The case of the Dying Marrows INSTRUCTION BOOKLET Instruction 2011 v4 Introduction In the sleepy village of Early Winter, little has changed for decades. Located twenty miles from the nearest town, the majority of the population have lived in the village all their lives and many are now retired. There is a small shop, post office, public house, school and church in the village centre. Surrounding the village are several small farms, each with a small herd of dairy cattle. Life in the village tends to focus on rural activities, with the annual village show being the highlight of the year. The prizes awarded for local produce are fiercely contested and behind the tranquil scenes emotions can run high, after all there is considerable pride at stake. Retired Colonel Smith has run the public house for the last twelve years. He is highly respected and popular in the village; his hobby is growing prize vegetable marrows. His marrows have won the village show for three years running, much to the annoyance of Mrs Dale (who runs the small shop); she also grows marrows, and has been second place at the show for the last three years. The one thing that really annoys Mrs Dale is that she sells the plant fertiliser to Colonel Smith, the very thing that makes his marrows the best. She has often told him that one day she will “replace the fertiliser with water before you buy it, then look what will happen to your marrows”.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • EN SDS-06 炭酸銀(2020.02.01.)英訳 Ver.05
    SDS-06 Silver Carbonate(1/5) Safety Data Sheet Silver Carbonate Created : Feb. 17. 2010 Revised : Feb. 01. 2020 1. Product and Company Information Product Name : Silver (I) Carbonate Company Name : Toyo Chemical Industrial Co., Ltd. Address : 2-26-13 Naka-Izumi, Komae-City, Tokyo Tel : +81-3-3489-5152 Fax : +81-3-3488-1706 Emergency Contact : As above Recommended use of the product Catalysts, Reagents and restrictions on use : 2. Hazard identification GHS classification of the substance Health hazards : Acute toxicity, oral Category 5 Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 2B GHS Label elements Pictograms : Signal word : Warning Hazard Statements : H303 : May be harmful if swallowed. H315 : Causes skin irritation. H320 : Causes eye irritation. Precautionary statement Safety Measures : P264 : Wash thoroughly after handling. P280 : Wear protective gloves/protective clothing/eye protection/face protection. Emergency Measures : P302 +P352 : IF ON SKIN : Wash with plenty of water or sope. P305 + P351 + P338 : IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do - continue rinsing. P312 : Call a doctor if you feel unwell. P332 + P313 : If skin irritation occurs : Get medical advice/attention. P337 + P313 : If eye irritation persists : Get medical advice/attention. P362 + P364 : Take off contaminated clothing and wash it before reus. Other hazards : No information 3. Composition/information on ingredients Substance or Mixture : Substance Chemical name or general name : Silver (I) Carbonate Another name: ― Concentration or concentration range : 100% Molecular formula (molecular weight) : Ag2CO3 (275.75) Chemical characteristics (rational or structural formula) : Ver.GHS-05 SDS-06 Silver Carbonate(2/5) CAS No.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title A METHOD FOR PREPARING CODEINONE Permalink https://escholarship.org/uc/item/8x01b3mg Authors Rapoport, Henry Reist, Helen N. Publication Date 1954-08-27 eScholarship.org Powered by the California Digital Library University of California UCRL 2683 UNCLASSffJ~Bl UNIVERSITY OF CALIFORNIA .. ~ • TWO-WEEK LOAN COPY This is a library Circulating Copy . I'•• which may be borrowed for two weeks. ·~I For a personal retention copy, call Tech. Info. Diuision, Ext. 5545 BERKELEY. CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. UCRL-2683 Unclassified Chemistry Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Contract No. W -7405•eng-48 A METHOD FOR PREPARING CODEINONE Henry Rapoport and Helen N.
    [Show full text]
  • Method of Silver Impregnation for Nervous Tissue Embedded in Paraffin
    J Clin Pathol: first published as 10.1136/jcp.18.2.252 on 1 March 1965. Downloaded from 252 Technical methods 4 Impregnate in the following solution at 60°C. until a dark amber colour. If the solution has been pre-warmed this takes from 15 to 30 minutes; if not it may take up to Method of silver impregnation for an hour, at which time the section should be taken out nervous no matter what colour it is. tissue embedded in Hortega's strong silver carbonate paraffin (lithium or sodium)2 .............. 30 ml. Pyridine ........................ 10 drops SERGE DUCKETT1 From Maida Absolute alcohol .......... ........ 15 drops Vale Hospitalfor 5 Wash rapidly in 95° alcohol. Nervous Diseases, London 6 Reduce in 10% formol for one to two minutes. 7 Wash in distilled water. The aim of the silver impregnation methods for paraffin- 8 If desired tone in a 0-2 % gold chloride solution. embedded sections of nervous tissue is to combine 9 Wash in distilled water. finesse of histological detail with an easy method of 10 Leave in a 2% oxalic acid solution for a few minutes processing. until the sections become reddish. This step accentuates The following method is presented here because of its the staining of axones. rapidity, reliability, staining quality, and utility as a 11 Fix, if desired, in a 5% solution of sodium thio- general purpose stain. The basic technique, without the sulphate. variations, was devised by Fincher (1932) on the basis 12 Wash in distilled water, dehydrate, clear, and mount of Hortega's silver carbonate impregnation method for in balsam.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 20-Nov-2014 Revision Number 3 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identification Product Description: Silver carbonate Cat No. : 176970000; 176970050; 176970250; 176971000 Synonyms None. CAS-No 534-16-7 EC-No. 208-590-3 Molecular Formula C Ag2 O3 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Acros Organics BVBA Janssen Pharmaceuticalaan 3a 2440 Geel, Belgium E-mail address [email protected] 1.4. Emergency telephone number For information US call: 001-800-ACROS-01 / Europe call: +32 14 57 52 11 Emergency Number US:001-201-796-7100 / Europe: +32 14 57 52 99 CHEMTREC Tel. No.US:001-800-424-9300 / Europe:001-703-527-3887 SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards Serious Eye Damage/Eye Irritation Category 1 Environmental hazards Acute aquatic toxicity Category 1 Chronic aquatic toxicity Category 1 Classification according to EU Directives 67/548/EEC or 1999/45/EC Symbol(s) Xi - Irritant N - Dangerous for the environment R-phrase(s) R41 - Risk of serious damage to eyes R50/53 - Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment ______________________________________________________________________________________________ ACR17697 Page 1 / 9 SAFETY DATA SHEET Silver carbonate Revision Date 20-Nov-2014 ______________________________________________________________________________________________ For the full text of the R-phrases and H-Statements mentioned in this Section, see Section 16.
    [Show full text]
  • 9-Double Displacement Reactions
    Experiment 9 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are “trading places,” as in the following hypothetical reaction: AB (aq) + CD (aq) à AD + CB Where AB exists as A+ and B- ions in solution and CD exists as C+ and D- ions in solution. As the ions come in contact with each other, there are six possible combinations that might conceivably cause a chemical reaction. Two of these combinations are the meeting of ions of like charge; that is, A++ C+ and B-+ D-. But since like charges repel, no reaction will occur with these combinations. Two other possible combinations are those of the original two compounds; that is, A++ B- and C++ D-. Since we originally had a solution containing each of these pairs of ions, they can mutually exist in the same solution; therefore they do not recombine. Thus the two possibilities for chemical reaction are the combination of each of the positive ions with the negative ion of the other compound; that is, A++ D- and C++ B-. In summary, when the solutions are mixed, these ions can all come into contact with each other, and new products could be formed. If new products are to be formed, there is only one possible combination of products: since like charges repel each other, we cannot have new compounds containing two negative ions or two positive ions. The only other possible new combination comes from the positive and negative ions of the two compounds switching places.
    [Show full text]
  • 1 Silver Staining of 2D Electrophoresis Gels Cécile Lelong, Mireille
    Silver Staining of 2D Electrophoresis Gels Cécile Lelong, Mireille Chevallet, Sylvie Luche, Thierry Rabilloud CEA-DSV-iRTSV/LBBSI and UMR CNRS 5092 CEA Grenoble 17 rue des martyrs, F-38054 Grenoble Cedex 9, France 1. Introduction Silver staining of polyacrylamide gels was introduced in 1979 by Switzer et al. [1], and rapidly gained popularity owing to its high sensitivity, ca. 100 times higher than staining with Coomassie Blue. However, the first silver staining protocols were not trouble-free. High backgrounds and silver mirrors were frequently experienced, with a subsequent decrease in sensitivity and reproducibility. This led many authors to suggest improved protocols, so that more than 100 different silver staining protocols for proteins in polyacrylamide gels can be found in the literature. However, all of them are based on the same principle (see [2] and [3] for details) and comprise more or less four major steps. a) The first step is fixation, and aims at insolubilizing the proteins in the gels and removing the interfering compounds present in the 2D gels (glycine, Tris, SDS and carrier ampholytes present at the bottom of the gels). b) The second step is sensitization, and aims at increasing the subsequent image formation. Numerous compounds have been proposed for this purpose. all these compounds bind to the proteins, and are also able either to bind silver ion, or to reduce silver ion into metallic silver, or to produce silver sulfide [2], [3]. this sensitization step is sometimes coupled with the fixation step. c) The third step is silver impregnation. Either plain silver nitrate or ammoniacal silver can be used.
    [Show full text]
  • The Complex Solubility Oi Silver Halides and Silver Thiocyanate in Mixed Solvents':-* 1
    AR HIV Z A KEM I JU 26 (1954) 243' Methorics oi the Precipitation Processes. XI/ The Complex Solubility oi Silver Halides and Silver Thiocyanate in Mixed Solvents':-* 1. Kratohvil and B. Teiak Applied Chemist ry Laboratory, Schoo! of Public Health, and Laboratory of Physical Chemistry, Faculty of Science, University of Zagreb, Croatia, Yugoslavia R e ceive d Nove mber 8, 1954 The complex solubility of silver chloride, bromide, iodide, and thiocyanate in halide or thiocyanate solutions in isodielectric mixtures of water-methanol, water-ethanol and water-acetone was determined. Complex solubility of these precipitates increased, in r egard to water, with increasing concentration of the organic component in solutions. The increase of complex solubility was nearly the same for water-methanol and water-ethanol mixtures of the same dielectric constant, but the change of complex solubility in corresponding water-acetone mixtures was much greater. The values of the ionic solubilities at different dielectric constants ne- .. cessary for calculating the stability constants of the complex species present, were obtained from Ricci and Davis' relation. The lowering of the dielectric constant of the medium caused an increase of the stability constants of complexes. The differences observed in solutions of the same dielectric constant but of different com­ position (water-alcohols against water-acetone mixtures) are tenta­ tively explained by the change in ion-dipole (solvent molecule) binding. In the course of the investigation of precipitation and coaguJation of silver halides in mixed solvents1 it was of considerable interest to establish the change of complex solubility of these precipitates in various media.
    [Show full text]