Pindolol Once Daily in the Treatment of Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Pindolol Once Daily in the Treatment of Hypertension Upsala J Med Sci 81: 151-154, 1976 Pindolol Once Daily in the Treatment of Hypertension GORAN FRITHZ From the Department of Internal Medicine, Central Hospital, Eskilstuna, Sweden ABSTRACT patients, who have achieved an adequate pressure The beta-adrenergic blocking drug pindolol has been used on multiple doses of either pindolol, alprenolol or in the treatment of hypertension, using one single dose per propranolol (7, 13). With this background a study day, given in the morning. 16 patients with mild to moder- has been designed to investigate the possibility of ate hypertension were treated with doses which were in- creased if necessary up to 20 mg, and 14 patients achieved initiating treatment of patients with hypertension an adequate level of blood-pressure control. The trial was with a single dose of pindolol which is gradually carried out as a single-blind cross-over study. The study increased, as required. shows that pindolol, a nonelective beta-blocker of high potency, may be given once daily as a hypotensive, offering advantages both for patients and physicians. Side-effects MATERIAL AND METHODS were infrequent. Out-patients with mild to moderate hypertension were selected for the study. All were previously untreated and referred from general practitioner for investigation of INTRODUCTION hypertension. They were all included in the routine exam- ination scheme including e.g. ECG, fundoscopy, chest During the last decade, beta-adrenergic receptor X-ray, electrolytes and creatinine in serum and urinary blocking drugs have become an accepted form of analysis for protein, glucose and blood cells. If necessary, treatment of arterial hypertension. An increasing further investigations were carried out, such as intrave- number of different beta-blockers, with varying de- nous pyelography, angiography and hormone analysis. grees of selectivity, potency and intrinsic sympato- The investigations were carried out parallel with the treat- ment. The age and sex distribution is shown in Table I. In mimetic effect, have been introduced on the mar- Table I1 the patients have been grouped according to the ket. WHO-criteria of hypertension as well as to the fundo- Pindolol (Visken@)belongs to the group of beta- scopy changes according to Keith-Wagner-Baker. blockers, which have an intrinsic sympatomimetic Patients with the usual contraindications for treatment with beta-blockers such as asthma bronchiale, AV-block effect, and is characterized especially by its high I1 and 111, and heart failure, were excluded from the potency (2). Its pharmacokinetics have been ex- study. haustively described, particularly in relation to the liver-metabolism, by Gugler et al. (10). Its hypoten- Design of the trial sive effect has been documented, e.g. by Dun& (4), At least two blood-pressure measurements were taken, Collings & King (3) and Feltham et al. (5). Pindolol on two different occasions, before the treatment started. After that, a run-in period of three weeks on placebo was has usually been administered twice to three times used. Patients, whose diastolic pressure fell below 105 daily in the treatment of hypertension. However, mmHg during the placebo period were to be excluded a recent study by Olsson & Varnauskas (14) showed from the study. The blood-pressure after the placebo that the betablocking effect after one single oral period was recorded as the initial value in the calculations. In the phase of active treatment, pindolol was given dose of 10 mg pindolol lasts for 24 hours. Even if perorally at 8 a.m., starting with a 5 mg dose. The blood- the beta-blocking effect cannot be directly corre- pressure was measured at four week intervals. The cn- lated to the hypotensive effect, these results suggest' terion for adequate pressure-control was considered to be the possibility of a less frequent administration of a pressure under 165/95. The dose of pindolol was in- pindolol in the treatment of hypertension. creased in steps of 5 mg up to a total single dose of 20 mg. Doses over 20 mg were not regarded as suitable in this Recently two Swedish studies have demonstrated study. The period of active treatment covered 4 months. that it is possible to maintain an adequate blood- Thus, patients requiring 20 mg were observed for one pressure level, with one single dose of pindolol, in month on that dose. The blood-pressure was always Upsala J Med Sci 81 152 G. Frithz Table I. Patients grouped according to age and sex pressure could be expected. It has recently been discussed, that, with beta-blockers which have an intrinsic sympaticomimetic property, the stirhulat- ing effect may counteract the hypotensive effect and give a rise in the blood-pressure (15). There- fore, after the study was ended, it was considered Men 2 5 3 Women 3 3 preferable to treat the two cases who did not achieve a fully acceptable pressure-control on pin- dolol alone, with a combination of a single daily dose of pindolol with one tablet of the fixed combi- measured by the same person, the author, with the same nation of 50 mg hydrochlorothiazide and 5 mg Mercury sphygmomanometer, with a 13 cm broad arm- amiloridchloride (Moduretic@)given simultaneous- cuff, after 10 minutes rest. The diastolic pressure was re- ly. On that combination both patients achieved a corded as the end of phase 5, i.e. disappearance of the sounds. The pressure was always measured in the out- diastolic pressure of 90 mmHg after one month’s patient ward between 8-9 a.m. The patients were in- further treatment. structed not to take the morning dose of pindolol on that The study demonstrates the clinical application day. For the statistical evaluation, Student’s two tailed of the earlier experimental observations by Olsson t-test for paired differences has been used. & Varnauskas (14). However, it must be born in mind, that the action of beta-blockers in hyperten- RESULTS sion is complex and that no direct correlation be- 16 patients were treated on the one dose per day tween the beta-blockade, measured as the inhibition regime. No one had to be excluded due to pressure- of isoprenaline-induced tachycardia, and the hypo- fall during the placebo period. 14 responded in the tensive effect can be quoted. study with a pressure-fall to under 165/95 mmHg. The blood-pressure was measured in the morning Two did not reach that level. Both non-responders to obtain an interval of 24 hours from the last tablet belonged to WHO-group I1 and had a diastolic pres- intake. It could naturally be argued, that it is of sure of 100 mmHg after four months, i.e. after one more interest to measure the pressure during the month on 20 mg pindolol. One of these patients day to see, whether the pressure control could be had FH (Fundus Hypertonicus) I1 in the eye- maintained in active life. However, it is well-known grounds, the other FH I. that the effect of a peroral dose of pindolol reaches The results after four months treatment are its peak after about 3 hours (l), so there is little shown in Table 111, together with the dosages of reason to believe, that the pressure control should pindolol at that time. The mean dosage of pindolol be less satisfactory during the day. The ideal must, is somewhat lower for patients belonging to WHO I of course, be to make repeated measurements dur- group than that for the WHO I1 group. ing the day, which in this study was impossible for In three cases mild side effects, for which pindo- practical reasons, since the patients were in active lo1 may have been responsible, were registered. employment. Telemetric measurements in selected One patient complained of palpitations, one of cases offer one possibility in such situations, an- dizziness and one of slight nausea after the tablet other is measurements by the patients themselves intake. Two patients were receiving 15 mg, and the at repeated intervals during the day. Gordon (9) third 20 mg. None reported sleep-disturbances. recently reported three patients who cooperated in such a study, and he found little difference in the DISCUSSION Most of the patients responded well, with adequate Table 11. Patients grouped according to WHO and pressure-control on one single, moderate dose of Keith- Wagner-Baker hypertension classification pindolol, given in the morning. It would perhaps Classi- WHO1 WHO11 FHO FHI FHII have been possible to go further with an increased fication .. (n) (n) (n) (n) (n) dosage. However, it was judged as not advisable, partly due to the possibility of subjective symp- Men 7 3 5 2 3 Women 5 1 3 2 1 toms, and partly because a paradoxal effect on the Upsala J Med Sci 81 Pindolol treatment of hypertension 153 Table 111. Blood-pressure before and after 4 months treatment and the dose of pindolol in the 4th month After Before treatment Range treatment Range Diff. Mean systolic BP, mmHg 181.2k7.1 210470 150.1f8.3 165-120 31 p<O.OOl Mean diastolic BP, mmHg 110.5k3.2 120-105 91.0k3.0 100-80 19p<O.OOl Dose in the 4th month 10 mg 15 mg 20 mg Patients, WHO I 3 7 2 Patients, WHO I1 1 3 overall blood-pressure control whether pindolol treat mild to moderate hypertension with relatively was administered once, twice or three times daily. few side-effects. It offers advantages, both for the The difficulties in maintaining patients with patient and the physician, which are of great known hypertension on continuous treatment are importance in view of the very long duration of documented in many studies (6, 8, 11). It is also therapy. known, that the chances of missing tablet in-takes increase with the dosage frequency (12).
Recommended publications
  • Pindolol of the Activation of Postsynaptic 5-HT1A Receptors
    Potentiation by (-)Pindolol of the Activation of Postsynaptic 5-HT1A Receptors Induced by Venlafaxine Jean-Claude Béïque, Ph.D., Pierre Blier, M.D., Ph.D., Claude de Montigny, M.D., Ph.D., and Guy Debonnel, M.D. The increase of extracellular 5-HT in brain terminal regions antagonist WAY 100635 (100 ␮g/kg, i.v.). A short-term produced by the acute administration of 5-HT reuptake treatment with VLX (20 mg/kg/day ϫ 2 days) resulted in a inhibitors (SSRI’s) is hampered by the activation of ca. 90% suppression of the firing activity of 5-HT neurons somatodendritic 5-HT1A autoreceptors in the raphe nuclei. in the dorsal raphe nucleus. This was prevented by the The present in vivo electrophysiological studies were coadministration of (-)pindolol (15 mg/kg/day ϫ 2 days). undertaken, in the rat, to assess the effects of the Taken together, these results indicate that (-)pindolol coadministration of venlafaxine, a dual 5-HT/NE reuptake potentiated the activation of postsynaptic 5-HT1A receptors inhibitor, and (-)pindolol on pre- and postsynaptic 5-HT1A resulting from 5-HT reuptake inhibition probably by receptor function. The acute administration of venlafaxine blocking the somatodendritic 5-HT1A autoreceptor, but not and of the SSRI paroxetine (5 mg/kg, i.v.) induced a its postsynaptic congener. These results support and extend suppression of the firing activity of dorsal hippocampus CA3 previous findings providing a biological substratum for the pyramidal neurons. This effect of venlafaxine was markedly efficacy of pindolol as an accelerating strategy in major potentiated by a pretreatment with (-)pindolol (15 mg/kg, depression.
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Schizophrenia Care Guide
    August 2015 CCHCS/DHCS Care Guide: Schizophrenia SUMMARY DECISION SUPPORT PATIENT EDUCATION/SELF MANAGEMENT GOALS ALERTS Minimize frequency and severity of psychotic episodes Suicidal ideation or gestures Encourage medication adherence Abnormal movements Manage medication side effects Delusions Monitor as clinically appropriate Neuroleptic Malignant Syndrome Danger to self or others DIAGNOSTIC CRITERIA/EVALUATION (PER DSM V) 1. Rule out delirium or other medical illnesses mimicking schizophrenia (see page 5), medications or drugs of abuse causing psychosis (see page 6), other mental illness causes of psychosis, e.g., Bipolar Mania or Depression, Major Depression, PTSD, borderline personality disorder (see page 4). Ideas in patients (even odd ideas) that we disagree with can be learned and are therefore not necessarily signs of schizophrenia. Schizophrenia is a world-wide phenomenon that can occur in cultures with widely differing ideas. 2. Diagnosis is made based on the following: (Criteria A and B must be met) A. Two of the following symptoms/signs must be present over much of at least one month (unless treated), with a significant impact on social or occupational functioning, over at least a 6-month period of time: Delusions, Hallucinations, Disorganized Speech, Negative symptoms (social withdrawal, poverty of thought, etc.), severely disorganized or catatonic behavior. B. At least one of the symptoms/signs should be Delusions, Hallucinations, or Disorganized Speech. TREATMENT OPTIONS MEDICATIONS Informed consent for psychotropic
    [Show full text]
  • Does Curcumin Or Pindolol Potentiate Fluoxetine's Antidepressant Effect
    Research Paper Does Curcumin or Pindolol Potentiate Fluoxetine’s Antidepressant Effect by a Pharmacokinetic or Pharmacodynamic Interaction? H. A. S. MURAD*, M. I. SULIAMAN1, H. ABDALLAH2 AND MAY ABDULSATTAR1 Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah-21589, Saudi Arabia (SA) and Faculty of Medicine, Ain Shams University, Cairo-11541, Egypt. 1Department of Pharmacology, Faculty of Medicine, KAU, Jeddah-21589, SA. 2Department of Natural Products, Faculty of Pharmacy, KAU, Jeddah-21589, SA and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo-11541, Egypt Murad, et al.: Potentiation of Fluoxetine by Curcumin This study was designed to study potentiation of fluoxetine’s antidepressant effect by curcumin or pindolol. Twenty eight groups of mice (n=8) were used in three sets of experiments. In the first set, 9 groups were subjected to the forced swimming test after being treated intraperitoneally with three vehicles, fluoxetine (5 and 20 mg/kg), curcumin (20 mg/kg), pindolol (32 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg). One hour after the test, serum and brain fluoxetine and norfluoxetine levels were measured in mice receiving fluoxetine (5 and 20 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg). In the second set, the test was done after pretreatment with p-chlorophenylalanine. In the third set, the locomotor activity was measured. The immobility duration was significantly decreased in fluoxetine (20 mg/kg), curcumin (20 mg/kg), curcumin+fluoxetine (5 mg/kg) and pindolol+fluoxetine (5 mg/kg) groups. These decreases were reversed with p-chlorophenylalanine.
    [Show full text]
  • Serotonin and Drug-Induced Therapeutic Responses in Major Depression, Obsessive–Compulsive and Panic Disorders Pierre Blier, M.D., Ph.D
    Serotonin and Drug-Induced Therapeutic Responses in Major Depression, Obsessive–Compulsive and Panic Disorders Pierre Blier, M.D., Ph.D. and Claude de Montigny, M.D., Ph.D. The therapeutic effectiveness of antidepressant drugs in major development of treatment strategies producing greater efficacy depression was discovered by pure serendipity. It took over 20 and more rapid onset of antidepressant action; that, is lithium years before the neurobiological modifications that could addition and pindolol combination, respectively. It is expected mediate the antidepressive response were put into evidence. that the better understanding recently obtained of the Indeed, whereas the immediate biochemical effects of these mechanism of action of certain antidepressant drugs in drugs had been well documented, their antidepressant action obsessive– compulsive and panic disorders will also lead to generally does not become apparent before 2 to 3 weeks of more effective treatment strategies for those disorders. treatment. The different classes of antidepressant [Neuropsychopharmacology 21:91S–98S, 1999] treatments were subsequently shown to enhance serotonin © 1999 American College of Neuropsychopharmacology. neurotransmission albeit via different pre- and postsynaptic Published by Elsevier Science Inc. mechanisms. Clinical trials based on this hypothesis led to the KEY WORDS: Antidepressant; Electroconvulsive shocks; electroconvulsive shock treatment (ECT), which was Lithium; Pindolol; Hippocampus; Orbito-frontal cortex generally given only to hospitalized patients. It took several years after the demonstration of the In the late 1950s, the therapeutic effect of certain drugs antidepressant effect of iproniazide and imipramine to in major depression was discovered by serendipity. An understand that these drugs could interfere with the ca- antidepressant response was observed in patients with tabolism of monoamines.
    [Show full text]
  • Antidepressants the Old and the New
    Antidepressants The Old and The New October, 1998 iii In 1958 researchers discovered that imipramine had antidepressant 1 activity. Since then, a number of antidepressants have been HIGHLIGHTS developed with a variety of pharmacological mechanisms and side effect profiles. All antidepressants show similar efficacy in the treatment of depression when used in adequate dosages. Choosing the most PHARMACOLOGY & CLASSIFICATION appropriate agent depends on specific patient variables, The mechanism of action for antidepressants is not entirely clear; concurrent diseases, concurrent drugs, and cost. however they are known to interfere with neurotransmitters. Non-TCA antidepressants such as the SSRIs have become Tricyclic antidepressants (TCAs) block the reuptake of both first line agents in the treatment of depression due to their norepinephrine (NE) and serotonin (5HT). The relative ratio of relative safety and tolerability. Each has its own advantages and their effect on NE versus 5HT varies. The potentiation of NE and disadvantages for consideration in individualizing therapy. 5HT results in changes in the neuroreceptors and is thought to be TCAs may be preferred in patients who do not respond to or the primary mechanism responsible for the antidepressant effect. tolerate other antidepressants, have chronic pain or migraine, or In addition to the effects on NE and 5HT, TCAs also block for whom drug cost is a significant factor. muscarinic, alpha1 adrenergic, and histaminic receptors. The extent of these effects vary with each agent resulting in differing Secondary amine TCAs (desipramine and nortriptyline) have side effect profiles. fewer side effects than tertiary amine TCAs. Maintenance therapy at full therapeutic dosages should be Selective serotonin-reuptake inhibitors (SSRIs) block the 2 considered for patients at high risk for recurrence.
    [Show full text]
  • Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
    Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209
    [Show full text]
  • Pindolol, and Slow-Release Propranolol
    BRITISH MEDICAL JOURNAL VOLUME 285 13 NOVthER 1982 1387 Ambulatory blood pressure during once-daily randomised double-blind administration of atenolol, metoprolol, pindolol, and slow-release propranolol J S FLORAS, J V JONES, M 0 HASSAN, P SLEIGHT Abstract beta-blockers suggests, however, that they might not reduce blood pressure effectively for a full 24 hours.5-7 Most studies of Intra-arterial ambulatory blood pressure was measured once-daily beta-blockade have measured clinic blood pressure at over 24 hours, in 34 patients with newly diagnosed rest or during exercise, or both.8- 1 Atenolol, metoprolol, hypertension, both before and after double-blind ran- pindolol, and slow-release propranolol, among others, have been domisation to treatment with atenolol (n=9), metoprolol studied in this fashion. (n=9), pindolol (n=9), or propranolol in its slow-release Continuous ambulatory monitoring, which gives a direct, form (n=7). The dosage of each drug was adjusted at beat-to-beat measure of blood pressure, has advantages over monthly clinic visits until satisfactory control of blood clinic cuff records in assessing the extent and duration of effect pressure was achieved (140/90 mm Hg or less by cuff) of antihypertensive agents when subjects are at liberty to go or the maximum dose in the study protocol was reached. about their normal daily activities.'9 Earlier, we found that ateno- A second intra-arterial recording was made after these lol taken once daily for two to nine months effectively reduced drugs had been taken once daily at 0800 for three to eight ambulatory blood pressure for up to 28 hours after the last dose months (mean 50± SD 1 4) and was started four hours was administered.20 Other beta-blocking agents have been after the last dose.
    [Show full text]
  • Drug-Facilitated Sexual Assault Panel, Blood
    DRUG-FACILITATED SEXUAL ASSAULT PANEL, BLOOD Blood Specimens (Order Code 70500) Alcohols Analgesics, cont. Anticonvulsants, cont. Antihistamines, cont. Ethanol Phenylbutazone Phenytoin Cyclizine Amphetamines Piroxicam Pregabalin Diphenhydramine Amphetamine Salicylic Acid* Primidone Doxylamine BDB Sulindac* Topiramate Fexofenadine Benzphetamine Tapentadol Zonisamide Guaifenesin Ephedrine Tizanidine Antidepressants Hydroxyzine MDA Tolmetin Amitriptyline Loratadine MDMA Tramadol Amoxapine Oxymetazoline* Mescaline* Anesthetics Bupropion Pyrilamine Methcathinone Benzocaine Citalopram Tetrahydrozoline Methamphetamine Bupivacaine Clomipramine Triprolidine Phentermine Etomidate Desipramine Antipsychotics PMA Ketamine Desmethylclomipramine 9-hydroxyrisperidone Phenylpropanolamine Lidocaine Dosulepin Aripiprazole Pseudoephedrine Mepivacaine Doxepin Buspirone Analgesics Methoxetamine Duloxetine Chlorpromazine Acetaminophen Midazolam Fluoxetine Clozapine Baclofen Norketamine Fluvoxamine Fluphenazine Buprenorphine Pramoxine* Imipramine Haloperidol Carisoprodol Procaine 1,3-chlorophenylpiperazine (mCPP) Mesoridazine Cyclobenzaprine Rocuronium Mianserin* Norclozapine Diclofenac Ropivacaine Mirtazapine Olanzapine Etodolac Antibiotics Nefazodone Perphenazine Fenoprofen Azithromycin* Nordoxepin Pimozide Hydroxychloroquine Chloramphenicol* Norfluoxetine Prochlorperazine Ibuprofen Ciprofloxacin* Norsertraline Quetiapine Ketoprofen Clindamycin* Nortriptyline Risperidone Ketorolac Erythromycin* Norvenlafaxine Thioridazine Meclofenamic Acid* Levofloxacin* Paroxetine
    [Show full text]
  • Hallucinogens: an Update
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Hallucinogens: An Update 146 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Hallucinogens: An Update Editors: Geraline C. Lin, Ph.D. National Institute on Drug Abuse Richard A. Glennon, Ph.D. Virginia Commonwealth University NIDA Research Monograph 146 1994 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGEMENT This monograph is based on the papers from a technical review on “Hallucinogens: An Update” held on July 13-14, 1992. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]