The Genera Meoneura and Carnus (Diptera: Carnidae) in Israel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ectoparasite Activity During Incubation Increases Microbial Growth on Avian Eggs
Microbial Ecology https://doi.org/10.1007/s00248-017-1140-6 HOST MICROBE INTERACTIONS Ectoparasite Activity During Incubation Increases Microbial Growth on Avian Eggs G. Tomás1 & D. Martín-Gálvez1,2 & C. Ruiz-Castellano1 & M. Ruiz-Rodríguez1 & J. M. Peralta-Sánchez3 & M. Martín-Vivaldi3 & J. J. Soler1 Received: 20 December 2017 /Accepted: 28 December 2017 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract While direct detrimental effects of parasites on hosts are relatively well documented, other more subtle but potentially important effects of parasitism are yet unexplored. Biological activity of ectoparasites, apart from skin injuries and blood-feeding, often results in blood remains, or parasite faeces that accumulate and modify the host environment. In this way, ectoparasite activities and remains may increase nutrient availability that may favour colonization and growth of microorganisms including potential pathogens. Here, by the experimental addition of hematophagous flies (Carnus hemapterus, a common ectoparasite of birds) to nests of spotless starlings Sturnus unicolor during incubation, we explore this possible side effect of parasitism which has rarely, if ever, been investigated. Results show that faeces and blood remains from parasitic flies on spotless starling eggshells at the end of incubation were more abundant in experimental than in control nests. Moreover, eggshell bacterial loads of different groups of cultivable bacteria including potential pathogens, as well as species richness of bacteria in terms of Operational Taxonomic Units (OTUs), were also higher in experimental nests. Finally, we also found evidence of a link between eggshell bacterial loads and increased embryo mortality, which provides indirect support for a bacterial-mediated negative effect of ectoparasitism on host offspring. -
Diptera Communities of Raptor (Aves) Nests in Nova Scotia, Canada
The Canadian Entomologist (2020), page 1 of 13 doi:10.4039/tce.2020.26 ARTICLE Diptera communities of raptor (Aves) nests in Nova Scotia, Canada Valerie Levesque-Beaudin1* , Bradley J. Sinclair2, Stephen A. Marshall3, and Randolph F. Lauff4 1Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada, 2Canadian National Collection of Insects and Canadian Food Inspection Agency, Ottawa Plant Laboratory – Entomology, Central Experimental Farm, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada, 3School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada and 4Department of Biology, St. Francis Xavier University, 4130 University Avenue, Antigonish, Nova Scotia, B2G 2W5, Canada *Corresponding author. Email: [email protected] (Received 3 December 2019; accepted 9 March 2020; first published online 27 April 2020) Abstract The identity, richness, and abundance of true flies (Diptera) from the nests of three cavity-nesting raptors (Aves) were investigated in northern Nova Scotia, Canada. After fledging, flies were extracted from the nest mate- rial using Berlese funnels within an emergence chamber. Thirty-one species/morphospecies from 14 families were collected, including eight new records for Nova Scotia and two new records for eastern North America. Introduction Bird nests are micro-ecosystems with diverse communities of invertebrates, from ectoparasites to commensal species. Most studies of the arthropods in bird nests have focussed on the presence and impact of ectoparasites (Møller et al. 1990; Loye and Zuk 1991; Krištofík et al. 2001, 2002, 2003, 2007; Fairn et al. 2014), including fleas (Siphonaptera) (Phipps and Bennett 1974); mites (Acari) (Wasylik 1971); and nest-associated Diptera in the families Muscidae (Lowenberg-Neto 2008), Calliphoridae (Bennett and Whitworth 1991; Whitworth and Bennett 1992), and Carnidae (Cannings 1986a, 1986b; Dawson and Bortolotti 1997). -
Addenda to the Insect Fauna of Al-Baha Province, Kingdom of Saudi Arabia with Zoogeographical Notes Magdi S
JOURNAL OF NATURAL HISTORY, 2016 VOL. 50, NOS. 19–20, 1209–1236 http://dx.doi.org/10.1080/00222933.2015.1103913 Addenda to the insect fauna of Al-Baha Province, Kingdom of Saudi Arabia with zoogeographical notes Magdi S. El-Hawagrya,c, Mostafa R. Sharafb, Hathal M. Al Dhaferb, Hassan H. Fadlb and Abdulrahman S. Aldawoodb aEntomology Department, Faculty of Science, Cairo University, Giza, Egypt; bPlant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; cSurvey and Classification of Agricultural and Medical Insects in Al-Baha Province, Al-Baha University, Al-Baha, Saudi Arabia ABSTRACT ARTICLE HISTORY The first list of insects (Arthropoda: Hexapoda) of Al-Baha Received 1 April 2015 Province, Kingdom of Saudi Arabia (KSA) was published in 2013 Accepted 30 September 2015 and contained a total of 582 species. In the present study, 142 Online 9 December 2015 species belonging to 51 families and representing seven orders KEYWORDS are added to the fauna of Al-Baha Province, bringing the total Palaearctic; Afrotropical; number of species now recorded from the province to 724. The Eremic; insect species; reported species are assigned to recognized regional zoogeogra- Arabian Peninsula; Tihama; phical regions. Seventeen of the species are recorded for the first Al-Sarah; Al-Sarawat time for KSA, namely: Platypleura arabica Myers [Cicadidae, Mountains Hemiptera]; Cletomorpha sp.; Gonocerus juniperi Herrich-Schäffer [Coreidae, Hemiptera]; Coranus lateritius (Stål); Rhynocoris bipus- tulatus (Fieber) [Reduviidae, Hemiptera]; Cantacader iranicus Lis; Dictyla poecilla Drake & Hill [Tingidae, Hemiptera]; Mantispa scab- ricollis McLachlan [Mantispidae, Neuroptera]; Cerocoma schreberi Fabricius [Meloidae, Coleoptera]; Platypus parallelus (Fabricius) [Curculionidae, Coleoptera]; Zodion cinereum (Fabricius) [Conopidae, Diptera]; Ulidia ?ruficeps Becker [Ulidiidae, Diptera]; Atherigona reversura Villeneuve [Muscidae, Diptera]; Aplomya metallica (Wiedemann); Cylindromyia sp. -
IUFRO W Orld Series Volume 38
IUFRO World Series Volume 38 Volume Series World IUFRO Forest and Forest Water on a Changing Planet: on a Changing Planet: Water Vulnerability, Vulnerability, Forest and Water on a Changing Adaptation and Governance Opportunities and Governance Adaptation Planet: Vulnerability, Adaptation and Governance Opportunities A Global Assessment Report Editors: Irena F. Creed and Meine van Noordwijk IUFRO World Series Vol. 38 Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities A Global Assessment Report Editors: Irena F. Creed and Meine van Noordwijk Funding support for this publication was provided by the Ministry for Foreign Affairs of Finland, the United States Forest Service, the Austrian Federal Ministry of Sustainability and Tourism and the World Bank Group/PROFOR. The views expressed within this publication do not necessarily reflect official policy of the governments represented by these institutions/agencies or the institutions to whom the authors are affiliated. Publisher: International Union of Forest Research Organizations (IUFRO) Recommended catalogue entry: Irena F. Creed and Meine van Noordwijk (eds.), 2018. Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities. A Global Assessment Report. IUFRO World Series Volume 38. Vienna. 192 p. ISBN 978-3-902762-95-5 ISSN 1016-3263 Published by: International Union of Forest Research Organizations (IUFRO) Available from: IUFRO Headquarters Secretariat Marxergasse 2 1030 Vienna Austria Tel: +43-1-877-0151-0 E-mail: [email protected] www.iufro.org Language and content editor: Stephanie Mansourian Layout: Schrägstrich Kommunikationsdesign Cover photographs: iStock: Joel Carillet, Sande Murunga/CIFOR, Alexander Buck/IUFRO Printed in Austria by Eigner Druck, Tullner Straße 311, 3040 Neulengbach Preface ince its establishment in the year 2007, the Global Forest Expert Panels (GFEP) initiative of the Collaborative Partnership on Forests (CPF) has been effectively linking scientific knowledge with political decision-making on Sforests. -
Two Acalyptrate Species New for Science and a New Record for Spain (Diptera: Carnidae, Sphaeroceridae, Trixoscelididae)
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 58 (30/06/2016): 53–56. ISSN: 1134-9064 TWO ACALYPTRATE SPECIES NEW FOR SCIENCE AND A NEW RECORD FOR SPAIN (DIPTERA: CARNIDAE, SPHAEROCERIDAE, TRIXOSCELIDIDAE) Miguel Carles-Tolrá Avda. Príncipe de Asturias 30, ático 1, E-08012 Barcelona, España. ─ [email protected] Abstract: Two new acalyptrate species, Meoneura obtusangula sp. n. (Carnidae) and Trixoscelis anichtiri sp. n. (Trixoscelidi- dae), are described from Spain. Furthermore, the sphaerocerid Coproica rufifrons Hayashi, 1991 is recorded from the Iberian Peninsula (in Spain) for the first time. All of them were collected with traps baited with a dead piglet. Key words: Diptera, Carnidae, Sphaeroceridae, Trixoscelididae, new species, faunistics, Spain. Dos especies nuevas de acalípteros y una nueva cita para España (Diptera: Carnidae, Sphaeroceridae, Trixoscelididae) Resumen: Dos especies nuevas de acalípteros, Meoneura obtusangula sp. n. (Carnidae) y Trixoscelis anichtiri sp. n. (Trixos- celididae), se describen de España. Además, el esferocérido Coproica rufifrons Hayashi, 1991 se cita de la Península Ibérica (en España) por primera vez. Todas ellas fueron capturadas con trampas cebadas con un lechón muerto. Palabras clave: Diptera, Carnidae, Sphaeroceridae, Trixoscelididae, especies nuevas, faunística, España. Taxonomy / Taxonomía: Meoneura obtusangula sp.n., Trixoscelis anichtiri sp.n. Introduction Recently, Carles-Tolrá et al. (2014) published a paper about posterior view, forming a semicircle (Fig. 3). Postgonite the study of some dipterans collected on a dead piglet. The (Fig. 4) hook-shaped. Aedeagus (Fig. 1, 4): proximal part study was carried out in the province of Murcia (Spain). For brown, short, wide, stout, sclerotized, with extremely dense the captures a Schoenly trap (with two pitfall traps inside) hairs, distal part fleshy, dilated towards tip, cup-shaped, baited with a dead piglet was used. -
A Test of the Tasty Chick Hypothesis
59 Size versus health as a cue for host choice: a test of the tasty chick hypothesis F. VALERA1*, H. HOI2, A. DAROLOVA´ 3 and J. KRISTOFIK3 1 Estacio´n Experimental de Zonas A´ ridas (CSIC), General Segura 1, E-04001 Almerı´a, Spain 2 Konrad Lorenz Institut fu¨r Vergleichende Verhaltenforschung, Savoyenstrasse 1 a, A-1160, Vienna, Austria 3 Institute of Zoology, Slovak Academy of Sciences, Dubravska´ cesta 9, Bratislava 814 42, Slovakia (Received 8 September 2003; revised 20 October 2003 and 8 January 2004; accepted 8 January 2004) SUMMARY Knowledge about how parasites choose their hosts is scarce and incomplete. Recent work has primarily focused on host health (i.e. immunocompetence) whereas ecological factors have been largely neglected. Here we investigate whether the immunocompetence, the nutritional condition or body size of nestling European bee-eaters Merops apiaster are used as parameters for habitat choice of the haematophagous fly Carnus hemapterus. We found that (i) flies consistently and non- randomly preferred larger nestlings, even after controlling for differences in habitat availability (host surface), (ii) in the presence of similar-sized hosts, parasites’ choice for an individual was less likely than if hosts differed in size, (iii) the more the hosts differed in size, the more the parasites aggregated on the larger nestling and (iv) parasites changed their preference according to size criteria regardless of the identity of the larger host. Neither immunocompetence nor host body condition could account for parasites’ preference. Our results do not support the prediction of the Tasty Chick Hypothesis, namely that the poor immunocompetence ability of junior chicks makes them more attractive to parasites. -
The Ecology of Ectoparasitic Species Carnus Hemapterus on Nestlings Of
Slovak Raptor Journal 2010, 4: 45–48. DOI: 10.2478/v10262-012-0045-z. © Raptor Protection of Slovakia (RPS) The ecology of ectoparasitic species Carnus hemapterus on nestlings of common kestrel (Falco tinnunculus) in Bratislava K ekológii ektoparazitického druhu Carnus hemapterus na mláďatách sokola myšiara (Falco tinnunculus) v Bratislave Martin KAĽAVSKÝ & Barbora POSPÍŠILOVÁ Abstract: The time course and abundance of Carnus hemapterus on common kestrel’s nestlings depends on their age and the type of nest. Ectoparasites were found in 97% of nests and the majority of nestlings (83%) were observed to be infested between their 10th and 15th day of life. The highest infestation rate of Carnus hemapterus was recorded on 5- to 10-day old nestlings. We have confirmed that the Carnus hemapterus species feeds on blood; however no negative impact on nestlings and the breeding success of common kestrel was confirmed. Abstrakt: Doba výskytu a početnosť jedincov druhu Carnus hemapterus na mláďatách sokola myšiara závisí od veku mláďat a typu hniezda. Napadnutých bolo 97 % hniezd, pričom najviac mláďat (83 %) bolo napadnutých medzi 10. a 15. dňom života. Najväčší počet C. hemapterus bol zaznamenaný na mláďatách starých 5 až 10 dní. Potvrdili sme, že druh C. hemapterus sa živí krvou, ale negatívny vplyv na mláďatá a hniezdnu úspešnosť sokola myšiara sa nepotvrdil. Key words: hematocrit, hematophagy, abundance, Slovakia Martin Kaľavský, Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK–842 15. E-mail: [email protected]. Barbora Pospíšilová, Department of Ecosozology and Physiotactics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK–842 15. -
Diptera) in the Nearctic Region Sabrina Rochefort1, Marjolaine Giroux2, Jade Savage3 and Terry A
Canadian Journal of Arthropod Identifi cation No. 27 (January, 2015) ROCHEFORT ET AL. Key to Forensically Important Piophilidae (Diptera) in the Nearctic Region Sabrina Rochefort1, Marjolaine Giroux2, Jade Savage3 and Terry A. Wheeler1 1Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada; [email protected], [email protected] 2Montréal Insectarium / Space for life, 4581, rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada; [email protected] 3Biological Sciences, Bishop’s University, 2600 College Street, Sherbrooke, QC, J1M 1Z7, Canada [email protected]; Abstract Many species of Piophilidae (Diptera) are relevant to forensic entomology because their presence on a corpse can be helpful in estimating the postmortem interval (PMI) and document insect succession. The aims of this paper are to document the fauna of forensically relevant Piophilidae species worldwide and to present an updated checklist and identifi cation key to the Nearctic species, as existing keys are either outdated, too broad in geographical scope to be user-friendly, and/or contain ambiguous characters. Thirteen species are included in the checklist and key. Information on their biology, taxonomy, character variability, and distribution is provided, supplementing the extensive work of McAlpine (1977). Introduction stages (Martinez et al. 2006, Grisales et al. 2010). Forensic entomology is the use of insects and other Identifying species of forensic importance can arthropods as evidence in legal investigations (Catts sometimes be challenging when using morphological & Goff 1992). An important aspect of the discipline characters alone (Byrd & Castner 2001, Amendt et al. involves the estimation of the postmortem interval (PMI) 2011) and alternatives such as DNA markers have been based on arthropods associated with a body, an approach developed to identify problematic specimens (Wells that requires extensive knowledge of the local fauna and & Stevens 2008). -
Diptera) Attracted to Meat Baited Pyramidal Trap on Sapping Stump of European Walnut (Juglans Regia) in Central Bohemia (Czech Republic)
ISSN 1211-3026 Čas. Slez. Muz. Opava (A), 60: 223-233, 2011 DOI: 10.2478/v10210-011-0026-3 Records of interesting flies (Diptera) attracted to meat baited pyramidal trap on sapping stump of European walnut (Juglans regia) in Central Bohemia (Czech Republic) Miroslav Barták & Jindřich Roháček Records of interesting flies (Diptera) attracted to meat baited pyramidal trap on sapping stump of European walnut (Juglans regia) in Central Bohemia (Czech Republic). – Čas. Slez. Muz. Opava (A), 60: 223-233. Abstract: A pyramidal trap with combined bait is described and illustrated. The trap inserted above sapping stump of European walnut (Juglans regia) in a site in Central Bohemia near Uhlířské Janovice in 2010 yielded a rich spectrum of flies (Diptera). Records of 24 species most interesting from the faunistic, biological and nature conservancy point of view are given with comments upon their distribution and biology but a number of other captured species are also mentioned. Besides species developing in or attracted as adults to sap runs [e.g. Syrphidae: Ceriana conopsoides (Linnaeus, 1758), Aulacigastridae: three Aulacigaster spp., various Drosophilidae], other important components were formed by saproxylic [Xylomyidae: Solva marginata (Meigen, 1820), some Stratiomyidae, many Lonchaeidae, Milichiidae: Milichia ludens (Wahlberg, 1847), some Muscidae], mycophagous (some Asteiidae, Sphaeroceridae, Drosophilidae), necrophagous (some Sepsidae, Acartophtalmidae, Milichiidae, Sphaeroceridae) and saprophagous (some Sepsidae, Carnidae, Milichiidae, Sphaeroceridae) species, both latter attracted to meat-bait used in the trap. Aulacigaster falcata Papp, 1998 is the first record from Bohemia. Key words: Diptera, pyramidal trap, sapping stump of Juglans regia, meat-bait, new records Introduction A number of various trapping methods were developed to capture flies (for review and descriptions of traps see e.g. -
Fauna Europaea: Diptera – Brachycera Thomas Pape, Paul Beuk, Adrian Charles Pont, Anatole I
Fauna Europaea: Diptera – Brachycera Thomas Pape, Paul Beuk, Adrian Charles Pont, Anatole I. Shatalkin, Andrey L. Ozerov, Andrzej J. Woźnica, Bernhard Merz, Cezary Bystrowski, Chris Raper, Christer Bergström, et al. To cite this version: Thomas Pape, Paul Beuk, Adrian Charles Pont, Anatole I. Shatalkin, Andrey L. Ozerov, et al.. Fauna Europaea: Diptera – Brachycera: Fauna Europaea: Diptera – Brachycera. Biodiversity Data Journal, Pensoft, 2015, 3, pp.e4187. 10.3897/BDJ.3.e4187. hal-01512243 HAL Id: hal-01512243 https://hal.archives-ouvertes.fr/hal-01512243 Submitted on 21 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biodiversity Data Journal 3: e4187 doi: 10.3897/BDJ.3.e4187 Data Paper Fauna Europaea: Diptera – Brachycera Thomas Pape‡§, Paul Beuk , Adrian Charles Pont|, Anatole I. Shatalkin¶, Andrey L. Ozerov¶, Andrzej J. Woźnica#, Bernhard Merz¤, Cezary Bystrowski«», Chris Raper , Christer Bergström˄, Christian Kehlmaier˅, David K. Clements¦, David Greathead†,ˀ, Elena Petrovna Kamenevaˁ, Emilia Nartshuk₵, Frederik T. Petersenℓ, Gisela Weber ₰, Gerhard Bächli₱, Fritz Geller-Grimm₳, Guy Van de Weyer₴, Hans-Peter Tschorsnig₣, Herman de Jong₮, Jan-Willem van Zuijlen₦, Jaromír Vaňhara₭, Jindřich Roháček₲, Joachim Ziegler‽, József Majer ₩, Karel Hůrka†,₸, Kevin Holston ‡‡, Knut Rognes§§, Lita Greve-Jensen||, Lorenzo Munari¶¶, Marc de Meyer##, Marc Pollet ¤¤, Martin C. -
ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera
ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera. (Under the direction of Dr. Brian M. Wiegmann.) Efforts to understand the evolutionary history of flies have been obstructed by the lack of resolution in major radiations. Diptera is a highly diverse branch on the tree of life, but this diversity accrued at an uneven pace. Some of radiations that contributed disproportionately to species diversity occurred contemporaneously, and understanding the relationships of these taxa can illuminate broad scale patterns. Relationships between some subordinate groups of taxa are notoriously difficult to untangle, and genomic data will address these problems at a new scale. This project will focus on two major radiations in Diptera: Tabanus horse flies and relatives, and acalyptrate Schizophora. Tabanus includes over one thousand species. Synthesis focused research on the group is stymied by its species richness, worldwide distribution, inconsistent diagnosis, and scale of undescribed diversity. Furthermore, the genus may be non-monophyletic with respect to more than 10 other lineages of horse flies. A groundwork phylogenetic study of worldwide Tabanus is needed to understand the evolution of this lineage and to make comprehensive taxonomic projects manageable. Data to address this question was collected from two different sources. A dataset including five genes was sequenced from ninety-four species in the Tabanus group, including nearly all genera of Tabanini and at least one species from every biogeographic region. Then a new data source from a next generation sequencing approach, Anchored Hybrid Enrichment exome capture, was used to accumulate a dataset including hundreds of genes for a subset of the taxa. -
How Climate Change Affects the Seasonal Ecology Of€Insect
Ecological Entomology (2019), DOI: 10.1111/een.12792 INVITEDREVIEW How climate change affects the seasonal ecology of insect parasitoids KÉVIN TOUGERON,1,2,† JACQUES BRODEUR,2 CÉCILE LE LANN1 and JOAN VAN BAAREN1 1University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution), Rennes, France and 2Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Québec, Canada Abstract. 1. In the context of global change, modifications in winter conditions may disrupt the seasonal phenology patterns of organisms, modify the synchrony of closely interacting species and lead to unpredictable outcomes at different ecological scales. 2. Parasites are present in almost every food web and their interactions with hosts greatly contribute to ecosystem functioning. Among upper trophic levels of terrestrial ecosystems, insect parasitoids are key components in terms of function- ing and species richness. Parasitoids respond to climate change in similar ways to other insects, but their close relationship with their hosts and their particular life cycle – alternating between parasitic and free-living forms – make them special cases. 3. This article reviews of the mechanisms likely to undergo plastic or evolutionary adjustments when exposed to climate change that could modify insect seasonal strategies. Different scenarios are then proposed for the evolution of parasitoid insect seasonal ecology by exploring three anticipated outcomes of climate change: (i) decreased severity of winter cold; (ii) decreased winter duration; and (iii) increased extreme seasonal climatic events and environmental stochasticity. 4. The capacities of insects to adapt to new environmental conditions, either through plasticity or genetic evolution, are highlighted. They may reduce diapause expression, adapt to changing cues to initiate or terminate diapause, increase voltinism, or develop overwintering bet-hedging strategies, but parasitoids’ responses will be highly constrained by those of their hosts.