9Th International Congress of Dipterology

Total Page:16

File Type:pdf, Size:1020Kb

9Th International Congress of Dipterology 9th International Congress of Dipterology Abstracts Volume 25–30 November 2018 Windhoek Namibia Organising Committee: Ashley H. Kirk-Spriggs (Chair) Burgert Muller Mary Kirk-Spriggs Gillian Maggs-Kölling Kenneth Uiseb Seth Eiseb Michael Osae Sunday Ekesi Candice-Lee Lyons Edited by: Ashley H. Kirk-Spriggs Burgert Muller 9th International Congress of Dipterology 25–30 November 2018 Windhoek, Namibia Abstract Volume Edited by: Ashley H. Kirk-Spriggs & Burgert S. Muller Namibian Ministry of Environment and Tourism Organising Committee Ashley H. Kirk-Spriggs (Chair) Burgert Muller Mary Kirk-Spriggs Gillian Maggs-Kölling Kenneth Uiseb Seth Eiseb Michael Osae Sunday Ekesi Candice-Lee Lyons Published by the International Congresses of Dipterology, © 2018. Printed by John Meinert Printers, Windhoek, Namibia. ISBN: 978-1-86847-181-2 Suggested citation: Adams, Z.J. & Pont, A.C. 2018. In celebration of Roger Ward Crosskey (1930–2017) – a life well spent. In: Kirk-Spriggs, A.H. & Muller, B.S., eds, Abstracts volume. 9th International Congress of Dipterology, 25–30 November 2018, Windhoek, Namibia. International Congresses of Dipterology, Windhoek, p. 2. [Abstract]. Front cover image: Tray of micro-pinned flies from the Democratic Republic of Congo (photograph © K. Panne coucke). Cover design: Craig Barlow (previously National Museum, Bloemfontein). Disclaimer: Following recommendations of the various nomenclatorial codes, this volume is not issued for the purposes of the public and scientific record, or for the purposes of taxonomic nomenclature, and as such, is not published in the meaning of the various codes. Thus, any nomenclatural act contained herein (e.g., new combinations, new names, etc.), does not enter biological nomenclature or pre-empt publication in another work. ii 9th International Congress of Dipterology, Windhoek 2018, Abstract Volume. Preface Every four years, dipterists from around the globe meet up at the International Congresses of Dipterology to discuss scientific progress in the various disci- plines of dipterology, present research findings, liaise with colleagues and forge future research collaborations. The 9th International Congress of Dipterology (ICD9) is the first such Congress to be held on the African continent and the first in a developing country. The overall theme of the Congress was “Afrotropical dipterology”, but all themes and regions were represented. A total of 273 full delegates and students from 51 countries, attended the Congress, including 61 delegates from 13 African countries. This volume contains 321 abstracts of oral and poster presentations submitted to the Organising Committee of ICD9 for the Congress held in Windhoek, Na- mibia, in November 2018. This collection of abstracts serves as a snapshot of the range and quality of scientific activity in the international dipterological com- munity and this publication is a permanent record, summarising presentations at the Congress, serving an important purpose both for those who attended the meeting and those who did not. The table of contents is arranged according to the 23 symposia, arranged al- phabetically, to facilitate location of abstracts in specific topic areas. For the purposes of ICD9, poster presentations do not form part of symposia and are listed separately. Abstracts in the volume are arranged alphabetically by first author and the names of presenting authors (if more than one) are underlined. The footer for each abstract indicates to which symposium an oral presentation belongs or whether a plenary, keynote or poster presentation. Two indexes are included at the back of the volume, one comprising the names of all abstract authors, the other key words (as provided by the authors) and used in the titles. Abstracts were edited to a certain extent for consistency of style and formatting in collaboration with the authors and the various symposia Convenors, but the content of abstracts remains the sole responsibility of the authors. Spelling of words follows British rather than American orthography and all abstracts are edited to apply the passive voice. Presenting author names are underlined and an asterisk (*) indicates corresponding author. We take this opportunity to thank all ICD9 delegates and symposium Conve- nors, who assisted with arrangements and made the Congress possible. We also thank the various sponsors who gave financial support (as indicated on the back cover of this book), the Government of the Republic of Namibia and the people of Namibia for their friendly and helpful support. Ashley H. Kirk-Spriggs & Burgert S. Muller October 2018 9th International Congress of Dipterology, Windhoek 2018, Abstract Volume. iii Table of contents Preface .............................................................................................................iii Table of contents ...............................................................................................v Abstracts sorted by name of symposium and first author. “Plenary presentations” and “Poster presentations” are listed as separate headings. Advances in Afrotropical dipterology In celebration of Roger Ward Crosskey (1930–2017) – a life well spent. Adams, Z.J. & Pont, A.C. .......................................................................... 2 Systematics and taxonomy of Culicoides Latreille (Ceratopogonidae) in the Afrotropical Region – what are the challenges and what comes next? Bakhoum, M.T. et al. ....................................................................... 15 An assessment of Afrotropical craneflies (Tipulidae), with particular focus on the fauna of Cameroon. Boardman, P. ................................................. 31 Succulent plant niches and unexplored insect diversity – the gall midges (Cecidomyiidae) of Aizoaceae in South Africa. Colville, J.F. et al. ............ 55 What’s eating the grape? A review of African frugivorous Tephritidae research over the past 25 years. De Meyer, M. et al. ................................ 64 Biogeographical and allometric aspects of the Diopsidae of Madagascar. Feijen, H.R. et al. ...................................................................................... 77 Recent advances in the taxonomy and ecology of the hoverflies (Syrphidae) of the Afrotropical Region. Jordaens, K. & De Meyer, M. ....................... 126 No more Dodo doo doo – Diptera of the Mascarene Islands. Kirk-Spriggs, A.H. & Muller, B.S. .................................................................................. 133 Micropezidae of Madagascar – new collections and new connections. Marshall, S.A. .......................................................................................... 173 The “Atherix” syndrome – an overview of the systematics and taxonomy of Afrotropical Athericidae. Muller, B.S. & Kirk-Spriggs, A.H. .................... 198 Afrotropical Conopidae – 200 years of research on a beautiful group of Afrotropical flies.Stuke, J.-H. .................................................................. 267 Host associations and distribution of South African bat flies (Hippobosc- idae: Nycteribiinae). Szentiványi, T. et al. ............................................... 271 Taxonomy and feeding behaviour of Afrotropical snail-killing flies (Sciomyzidae). Vala, J.-C. et al. .............................................................. 289 Advances in Diptera phylogenomics A phylogenomic approach elucidates the early diverging acalyptrate line- ages of Schizophora. Bayless, K.M. et al. ................................................ 23 A phylogenomic perspective of the Oestroidea (Calyptratae) using ultra- conserved elements and historical museum specimens. Buenaventura, E. et al. ....................................................................................................... 38 9th International Congress of Dipterology, Windhoek 2018, Abstract Volume. v Big data, big challenges – resolving the phylogenetic relationships of the subfamily Syrphinae (Syrphidae) with target DNA enrichment. Burt, T.O. et al. ........................................................................................................... 41 Phylogenetic relationships of spider flies (Acroceridae) – discordance, uncertainty and the perils of phylogenomics. Gillung, J.P. ........................ 91 Phylogenomic analysis of Calyptratae – resolving a major radiation of Diptera. Kutty, S.N. et al. ........................................................................ 146 Deploying an army of nuclear genes to resolve the phylogeny of Australian soldier flies (Stratiomyidae) and the discovery of more than 150 new species. Lessard, B.D. et al. ................................................................... 150 A preliminary phylogeny of Asiloidea using anchored enrichment data (Brachycera). Li, X. et al. ......................................................................... 155 Molecular phylogeny of Allodia Winnertz sensu lato (Mycetophilidae) constructed using genome skimming. Magnussen, T. et al. ................... 169 Ultraconserved elements in a Diptera-wide phylogeny. Noble, K. et al. ...... 213 Is this the end of Syrphoidea? – Flower flies (Syrphidae) and big-headed flies (Pipunculidae) are not sister-groups. Pauli, T. et al. ........................ 225 Phylogenomic strategies to resolve major fly radiations – characters, complexity and the new data-rich paradigm. Wiegmann, B.M. ............... 305 Mecoptera, molecules and morphology – phylogenomic perspective on the origin of Diptera. Yeates, D.K. et al. .................................................
Recommended publications
  • R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 the Diptera of Lundy Have Been Poorly Studied in the Past
    Swallow 3 Spotted Flytcatcher 28 *Jackdaw I Pied Flycatcher 5 Blue Tit I Dunnock 2 Wren 2 Meadow Pipit 10 Song Thrush 7 Pied Wagtail 4 Redwing 4 Woodchat Shrike 1 Blackbird 60 Red-backed Shrike 1 Stonechat 2 Starling 15 Redstart 7 Greenfinch 5 Black Redstart I Goldfinch 1 Robin I9 Linnet 8 Grasshopper Warbler 2 Chaffinch 47 Reed Warbler 1 House Sparrow 16 Sedge Warbler 14 *Jackdaw is new to the Lundy ringing list. RECOVERIES OF RINGED BIRDS Guillemot GM I9384 ringed 5.6.67 adult found dead Eastbourne 4.12.76. Guillemot GP 95566 ringed 29.6.73 pullus found dead Woolacombe, Devon 8.6.77 Starling XA 92903 ringed 20.8.76 found dead Werl, West Holtun, West Germany 7.10.77 Willow Warbler 836473 ringed 14.4.77 controlled Portland, Dorset 19.8.77 Linnet KC09559 ringed 20.9.76 controlled St Agnes, Scilly 20.4.77 RINGED STRANGERS ON LUNDY Manx Shearwater F.S 92490 ringed 4.9.74 pullus Skokholm, dead Lundy s. Light 13.5.77 Blackbird 3250.062 ringed 8.9.75 FG Eksel, Belgium, dead Lundy 16.1.77 Willow Warbler 993.086 ringed 19.4.76 adult Calf of Man controlled Lundy 6.4.77 THE DIPTERA (TWO-WINGED FLffiS) OF LUNDY ISLAND R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 The Diptera of Lundy have been poorly studied in the past. Therefore, it is hoped that the production of an annotated checklist, giving an indication of the habits and general distribution of the species recorded will encourage other entomologists to take an interest in the Diptera of Lundy.
    [Show full text]
  • Insects, Beetles, Bugs and Slugs of Mt Gravatt Conservation Reserve
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-20 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 1 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 2 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus nigriceps Black-headed Sugar Ant 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 3 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 4 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below.
    [Show full text]
  • Nitrogen Content in Riparian Arthropods Is Most Dependent on Allometry and Order
    Wiesenborn: Nitrogen Contents in Riparian Arthropods 71 NITROGEN CONTENT IN RIPARIAN ARTHROPODS IS MOST DEPENDENT ON ALLOMETRY AND ORDER WILLIAM D. WIESENBORN U.S. Bureau of Reclamation, Lower Colorado Regional Office, P.O. Box 61470, Boulder City, NV 89006 ABSTRACT I investigated the contributions of body mass, order, family, and trophic level to nitrogen (N) content in riparian spiders and insects collected near the Colorado River in western Arizona. Most variation (97.2%) in N mass among arthropods was associated with the allometric effects of body mass. Nitrogen mass increased exponentially as body dry-mass increased. Significant variation (20.7%) in N mass adjusted for body mass was explained by arthropod order. Ad- justed N mass was highest in Orthoptera, Hymenoptera, Araneae, and Odonata and lowest in Coleoptera. Classifying arthropods by family compared with order did not explain signifi- cantly more variation (22.1%) in N content. Herbivore, predator, and detritivore trophic-levels across orders explained little variation (4.3%) in N mass adjusted for body mass. Within or- ders, N content differed only among trophic levels of Diptera. Adjusted N mass was highest in predaceous flies, intermediate in detritivorous flies, and lowest in phytophagous flies. Nitro- gen content in riparian spiders and insects is most dependent on allometry and order and least dependent on trophic level. I suggest the effects of allometry and order are due to exoskeleton thickness and composition. Foraging by vertebrate predators, such as insectivorous birds, may be affected by variation in N content among riparian arthropods. Key Words: nutrients, spiders, insects, trophic level, exoskeleton, cuticle RESUMEN Se investiguo las contribuciones de la masa de cuerpo, orden, familia y el nivel trófico al con- tenido de nitógeno (N) en arañas e insectos riparianos (que viven en la orilla del rio u otro cuerpo de agua) recolectadaos cerca del Rio Colorado en el oeste del estado de Arizona.
    [Show full text]
  • The Family Dolichopodidae with Some Related Antillean and Panamanian Species (Diptera)
    BREDIN-ARCHBOLD-SMITHSONIAN BIOLOGICAL SURVEY OF DOMINICA The Family Dolichopodidae with Some Related Antillean and Panamanian Species (Diptera) HAROLD ROBINSON SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 185 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • 1 U of Ill Urbana-Champaign PEET
    U of Ill Urbana-Champaign PEET: A World Monograph of the Therevidae (Insecta: Diptera) Participant Individuals: CoPrincipal Investigator(s) : David K Yeates; Brian M Wiegmann Senior personnel(s) : Donald Webb; Gail E Kampmeier Post-doc(s) : Kevin C Holston Graduate student(s) : Martin Hauser Post-doc(s) : Mark A Metz Undergraduate student(s) : Amanda Buck; Melissa Calvillo Other -- specify(s) : Kristin Algmin Graduate student(s) : Hilary Hill Post-doc(s) : Shaun L Winterton Technician, programmer(s) : Brian Cassel Other -- specify(s) : Jeffrey Thorne Post-doc(s) : Christine Lambkin Other -- specify(s) : Ann C Rast Senior personnel(s) : Steve Gaimari Other -- specify(s) : Beryl Reid Technician, programmer(s) : Joanna Hamilton Undergraduate student(s) : Claire Montgomery; Heather Lanford High school student(s) : Kate Marlin Undergraduate student(s) : Dmitri Svistula Other -- specify(s) : Bradley Metz; Erica Leslie Technician, programmer(s) : Jacqueline Recsei; J. Marie Metz Other -- specify(s) : Malcolm Fyfe; David Ferguson; Jennifer Campbell; Scott Fernsler Undergraduate student(s) : Sarah Mathey; Rebekah Kunkel; Henry Patton; Emilia Schroer Technician, programmer(s) : Graham Teakle Undergraduate student(s) : David Carlisle; Klara Kim High school student(s) : Sara Sligar Undergraduate student(s) : Emmalyn Gennis Other -- specify(s) : Iris R Vargas; Nicholas P Henry Partner Organizations: Illinois Natural History Survey: Financial Support; Facilities; Collaborative Research Schlinger Foundation: Financial Support; In-kind Support; Collaborative Research 1 The Schlinger Foundation has been a strong and continuing partner of the therevid PEET project, providing funds for personnel (students, scientific illustrator, data loggers, curatorial assistant) and expeditions, including the purchase of supplies, to gather unknown and important taxa from targeted areas around the world.
    [Show full text]
  • Innovative Strategies for Control of Coffee Insect Pests in Tanzania: a Review
    Innovative Strategies for Control of Coffee Insect Pests in Tanzania: A Review F. L., Magina1, D. L., Kilambo2, A. P. Maerere, and 1 J. M. Teri1 1Tanzania Coffee Research Institute (TaCRI), Lyamungu, Moshi, Tanzania. 2Department of Crop Science and Production, Sokoine University of Agriculture (SUA), Morogoro, Tanzania. Email: [email protected] Abstract: Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests are white coffee stem borer (Monochamus leuconatus), coffee berry borer (Hypothenemus hampei), Antestia bugs (Antestiopsis spp), leaf miner (Leucoptera spp), green scale (Coccus spp) and mealy bugs (Planococcus kenyae). Minor important pests including yellow headed borer (Dirphya nigricornis), thrips (Diarthrothrips coffeae) and berry moth (Prophants smaragdina) are reported to vary in crop losses caused. For decades industrial chemicals have been used to control the prevailing coffee insect-pests. But uses of industrial chemicals have been reported to have negative implications to the environment, animals and human health. In the recent years worldwide, efforts have been focused to researching on the sustainable control measures for coffee insect pests. For a period of over ten years Tanzania Coffee Research Institute (TaCRI) has been developing ecologically and environmentally sustainable coffee insect-pests control measures which include; use of bio pesticides, traps, parasites, attractants and biological agents. These technologies are progressively adopted by coffee farmers in the country.
    [Show full text]
  • Bulletin Number / Numéro 3 Entomological Society of Canada Société D’Entomologie Du Canada September / Septembre 2021
    ............................................................ Volume 53 Bulletin Number / numéro 3 Entomological Society of Canada Société d’entomologie du Canada September / septembre 2021 Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ...................................................................................................... ..................................................................................................................................................................................................................... ................................ ............................................................................................................................................................................................. ..................................................................................................... List of Contents / Table des matières Volume 53(3), September / septembre 2021 Up front / Avant-propos ..........................................................................................................114 Joint Annual Meeting 2021 / Reunion annuelle conjointe 2021...............................................118 STEP Corner / Le coin de la relève.........................................................................................120 News from the Regions / Nouvelles des régions.............................................................122 People in the News: Matt Muzzatti..........................................................................................124
    [Show full text]
  • Changes in the Insect Fauna of a Deteriorating Riverine Sand Dune
    ., CHANGES IN THE INSECT FAUNA OF A DETERIORATING RIVERINE SAND DUNE COMMUNITY DURING 50 YEARS OF HUMAN EXPLOITATION J. A. Powell Department of Entomological Sciences University of California, Berkeley May , 1983 TABLE OF CONTENTS INTRODUCTION 1 HISTORY OF EXPLOITATION 4 HISTORY OF ENTOMOLOGICAL INVESTIGATIONS 7 INSECT FAUNA 10 Methods 10 ErRs s~lected for compar"ltive "lnBlysis 13 Bio1o~ica1 isl!lnd si~e 14 Inventory of sp~cies 14 Endemism 18 Extinctions 19 Species restricted to one of the two refu~e parcels 25 Possible recently colonized species 27 INSECT ASSOCIATES OF ERYSIMUM AND OENOTHERA 29 Poll i n!ltor<'l 29 Predqt,.n·s 32 SUMMARY 35 RECOm1ENDATIONS FOR RECOVERY ~4NAGEMENT 37 ACKNOWT.. EDGMENTS 42 LITERATURE CITED 44 APPENDICES 1. T'lbles 1-8 49 2. St::ttns of 15 Antioch Insects Listed in Notice of 75 Review by the U.S. Fish "l.nd Wildlife Service INTRODUCTION The sand dune formation east of Antioch, Contra Costa County, California, comprised the largest riverine dune system in California. Biogeographically, this formation was unique because it supported a northern extension of plants and animals of desert, rather than coastal, affinities. Geologists believe that the dunes were relicts of the most recent glaciation of the Sierra Nevada, probably originating 10,000 to 25,000 years ago, with the sand derived from the supratidal floodplain of the combined Sacramento and San Joaquin Rivers. The ice age climate in the area is thought to have been cold but arid. Presumably summertime winds sweeping through the Carquinez Strait across the glacial-age floodplains would have picked up the fine-grained sand and redeposited it to the east and southeast, thus creating the dune fields of eastern Contra Costa County.
    [Show full text]
  • Pick Your Poison: Molecular Evolution of Venom Proteins in Asilidae (Insecta: Diptera)
    toxins Article Pick Your Poison: Molecular Evolution of Venom Proteins in Asilidae (Insecta: Diptera) Chris M. Cohen * , T. Jeffrey Cole and Michael S. Brewer * Howell Science Complex, East Carolina University, 1000 E 5th St., Greenville, NC 27858, USA; [email protected] * Correspondence: [email protected] (C.M.C.); [email protected] (M.S.B.) Received: 5 November 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: Robber flies are an understudied family of venomous, predatory Diptera. With the recent characterization of venom from three asilid species, it is possible, for the first time, to study the molecular evolution of venom genes in this unique lineage. To accomplish this, a novel whole-body transcriptome of Eudioctria media was combined with 10 other publicly available asiloid thoracic or salivary gland transcriptomes to identify putative venom gene families and assess evidence of pervasive positive selection. A total of 348 gene families of sufficient size were analyzed, and 33 of these were predicted to contain venom genes. We recovered 151 families containing homologs to previously described venom proteins, and 40 of these were uniquely gained in Asilidae. Our gene family clustering suggests that many asilidin venom gene families are not natural groupings, as delimited by previous authors, but instead form multiple discrete gene families. Additionally, robber fly venoms have relatively few sites under positive selection, consistent with the hypothesis that the venoms of older lineages are dominated by negative selection acting to maintain toxic function. Keywords: Asilidae; transcriptome; positive selection Key Contribution: Asilidae venoms have relatively few sites under positive selection, consistent with the hypothesis that the venoms of older lineages are dominated by negative selection acting to maintain toxic function.
    [Show full text]
  • Baccha (Ocyptamus) Medina, B
    The Syrphidae of Puerto Rico1'2 H. S. Telford3-* One cannot state with certainty when the first syrphid was collected from Puerto Rico and adjacent islands. Fabricius described a number of 1 Manuscript submitted to Editorial Board October 30, 1972. 2 Scientific paper number 3914. College of Agriculture Research Center, Washing­ ton State University, Pullman, Washington. Work was conducted under Project No. 0046. 3 Professor and Entomologist, Department of Entomology, Washington State University; Visiting Scientist, Department of Entomology, Agricultural Experiment Station, Mayagiiez Campus, Uío Piedras, Puerto Rico, September 1968-March 1969. This study was made possible by financial support from the Department of En­ tomology, Agricultural Experiment Station, Mayagiiez Campus, University of Puerto Rico, Río Piedras. I wish to thank Dr. L. P. R. F. Martorell, formerly Chairman, Department of Entomology, Agricultural Experiment Station, especially for his support and aid in all aspects of the project. Mr. Silverio Medina Gaud, Associate Entomologist, Agricultural Experiment Station, was of considerable help. He ac­ companied me on almost all field trips, assisted in sorting and preparing the material and made valuable field trips on his own. Dr. J. R. Vockeroth, Entomology Research Institute, Ottawa, Canada, verified many determinations and offered advice on nomenclatural problems. Others who materially aided in the loan of specimens, verified determinations or in other ways were: Dr. George Drury, U.S. Atomic Energy Commission, El Verde-Caribbean National Forest, Puerto Rico; Dr. Y. S. Sedman, Western Illinois University; Dr. L. V. Knutson, Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture; Dr. P. W. Wygodzinsky, American Museum of Natural History; Dr.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]