From Quantum Chemistry to Quantum Biology: a Path Toward Consciousness

Total Page:16

File Type:pdf, Size:1020Kb

From Quantum Chemistry to Quantum Biology: a Path Toward Consciousness Published online: December 30, 2020 Perspective From quantum chemistry to quantum biology: a path toward consciousness Jack A. Tuszynski1;2;3;* 1Department of Oncology, University of Alberta, Edmonton, T6G 1Z2, Alberta, Canada 2Department of Physics, University of Alberta, Edmonton, T6G 2E9, Alberta, Canada 3DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, TO, Italy *Correspondence: [email protected] (Jack A. Tuszynski) DOI:10.31083/j.jin.2020.04.393 This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). This paper presents a historical overview of quantum mechanical wave function needs to represent the resultant molec- physics methodology's development and application to ular orbital. Since both chemistry and biochemistry require the various science fields beyond physics, especially biol- creation and destruction of bonds between atoms through chemi- ogy and consciousness. Following a successful interpre- cal reactions, quantum mechanical interactions occur in these pro- tation of several early 20th century experiments, quantum cesses (McQuarrie, 2008). Hence, by extension, all living sys- physics gradually provided a conceptual framework for tems, like non-living systems, depend for their structural stability molecular bonds via quantum chemistry. In recent years on the existence of quantum mechanical wavefunctions represent- individual biological phenomena such as photosynthesis ing states at the level of atomic and molecular orbitals. However, and bird navigation have been experimentally and theo- some researchers consider these quantum mechanical manifesta- retically analyzed using quantum methods, building con- tions of living systems rather merely because they do not delve ceptual foundations for quantum physics' entry into bi- into animate matter's more fundamental characteristics. Such fun- ology. Quantum concepts have also been recently em- damental properties include the unitary sense of oneness and syn- ployed to explain physiology's allometric scaling laws by chronization in living systems, whose explanation may call for introducing quantum metabolism theory. In the second higher-level quantum effects such as the Bose-Einstein conden- part of this work, we discuss how quantum physics may sation, quantum coherent superposition wave-function entangle- also be pivotal to our understanding of consciousness, ment. It is still unclear if mechanisms involved in these exotic ef- which has been touted by some researchers as the last fects operate in biology, but they could explain some of the most frontier of modern science. Others believe that conscious- enigmatic life features if they do. However, quantum effects are ness does not belong within the realm of science at all. commonly claimed to be washed out due to thermal decoherence Several hypotheses, especially the Orch OR theory, have effects taking place at scales larger than those involving individ- been suggested over the past two decades to introduce a ual atoms or sub-atomic particles, at higher temperatures, and in scientific basis to consciousness theory. We discuss the aqueous media create a relatively noisy environment for molecular merits and potential extensions of these approaches. interactions. Thus, the possibility of quantum states playing im- portant functional roles at mesoscopic or, especially, macroscopic Keywords scales in "warm, wet and noisy" biological systems seems prob- Quantum physics; quantum biology; quantum metabolism; conscious- lematic due to environmental decoherence effects (Davis et al., ness 2010). 1. Introduction On the other hand, it is reasonable to expect that evolution, Quantum mechanics emerged as the most fundamental theory through the process of natural selection over billions of years of matter at the turn of the 19th and 20th centuries and, in sub- of experimentation and countless parallel attempts of trial and sequent decades, revolutionized the way we view not only Na- error, may have solved the decoherence problem so that meso- ture but also reality. Elementary background information about scopic/macroscopic quantum states are indeed essential features Journalquantum of Integrative physics can be Neuroscience found in the Appendix. Applications of of biological systems. If organized quantum states exist in cells, quantum methodology to chemistry aimed at understanding the they are presumably integrated among their components and or- stability of chemical compounds and mechanisms of chemical re- ganelles. This introduces another critical issue into consideration, actions proved to be exceptionally successful, which led to the de- i.e., that the hierarchical multi-scale organization of living systems velopment of quantum. It was demonstrated that in the formation must have developed a way of processing information between of chemical bonds, especially covalent bonds in which electrons scales. An efficient means of filtering noise must be present to are shared between neighboring atoms in a molecule, a quantum maintain functional integrity. J. Integr. Neurosci. 2020 vol. 19(4), 687–700 ©2020 Tuszynski Published by IMR Press. Sixty years ago, it was commonplace to suppose that quan- harnessing such phenomena as quantum tunneling, superposition, tum mechanics held the key to the mystery of life. Following and entanglement, which can yield novel and unexpected phenom- on their success in explaining the microscopic properties of non- ena. Given that biology's basic processes take place at a molecu- living matter, the founders of quantum mechanics hoped their the- lar level, employing quantum effects for greater efficiency does ory was powerful enough to explain the peculiarities of the liv- not seem impossible in principle. Quantum coherence, collective ing state of matter, too. Erwin Schrödinger, Niels Bohr, Werner modes of excitation, and condensation phenomena represent addi- Heisenberg, Eugene Wigner and their contemporaries all offered tional attractive features that could explain the mechanisms behind speculations. At the same time, Schrödinger's famous book What biological organisms' manifest stability and integrity. is Life?, published in 1944 (Schrödinger, 1944), paved the way for On the other hand, the Heisenberg uncertainty principle sets a molecular biology's birth in the 1950s. Its major thrust was the fundamental limit on all molecular processes' fidelity. For the cell author's attempt to understand biological organization and func- to perform appropriately, the right parts must be in the right place tion achieved with apparent defiance of the second law of ther- at the right time. This appears to be a much more relevant objective modynamics, i.e., by reducing the system's entropy. This paradox for living systems than the principle of energy minimization that can be solved by the inclusion of metabolism, which provides the drives physical processes. Quantum mechanics sets fundamental necessary physical work to overcome the otherwise inevitable in- limits from the Heisenberg uncertainty principle and impacts the crease of entropy. However, what is still very much a mystery is accuracy with which molecules can cooperate collectively. How- how perfectly synchronized biological processes are across spa- ever, it is reasonable to expect that some of life's processes have tial and temporal dimensions connecting the hierarchical organi- evolved to the "quantum edge", where a compromise may be struck zational scales of a living system. Here, quantum mechanics may between speed, energy and accuracy. At any rate, the nineteenth- indeed come to the rescue, if only we could explain the required century view of life as "magic matter", exemplified by the use absence of decoherence. of the terms "organic chemistry" or "life force", is obsolete to- Unfortunately, over 50 years, the great expectation that quan- day and has been replaced by a model of the cell as a complex tum mechanics could easily and powerfully explain living systems system of highly efficient and co-ordinated nano-machines oper- and life processes driving them as it had explained other types of ating under the control of genetic software encoded in DNA and matter so exquisitely and precisely has not yet come to fruition. implemented by the cellular transcription/translation machinery. However, parallels between the state of biology today and the state These tiny components of the cell's molecular machinery are made of physics a century ago are striking. Indeed, quantum mechan- mostly from proteins. They include pumps, motors, rotors, ratch- ics is needed to explain the sizes and shapes of molecules and ets, scissors, cables, levers, sensors, and complexes, including pro- their chemical bonding details. Still, no enunciated "life princi- tein polymers: actin filaments, intermediate filaments and micro- ple" has emerged from the quantum realm that would single out tubules. Their exquisite design, achieved by two billion years of the living state as in any way a unique form of a physical state. evolution and natural selection, exhibits extraordinary efficiency st Furthermore, classical ball-and-stick models of protein and other and versatility and represents a challenge to 21 -century nano- biomolecules and their computational simulations using classi- technologists. Having provided arguments both for and against cal (Newtonian) molecular dynamics methods seem adequate for quantum effects in biology, in the section below, we discuss the ev- most molecular, structural, and
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Quantum Biology: an Update and Perspective
    quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester,
    [Show full text]
  • Quantum Mechanics and Biology
    QUANTUM MECHANICS AND BIOLOGY H. C. LONGUET-HIGGINS From the University of Cambridge, England I should like to begin by saying that I feel very diffident about speaking on the subject which the organizers of this Conference invited me to discuss with you. What I have to say will inevitably be limited by the extreme superficiality of my acquaintance with modem biochemistry and biophysics. The only apology which I can offer for being here at all is that I feel, in common with most scientists, that it is a good thing for workers in quite different fields to meet occasionally and compare notes so as to discover whether the methods of one discipline can usefully be applied to the problems of another. It will soon become apparent to you that my opinions on the usefulness of quantum mechanics to biologists are decidedly con- servative; but if these opinions are not generally shared, perhaps at least they will provoke discussion. The thesis which I want to develop in the next few minutes will seem to many of you to be rather pedestrian. Briefly I want to suggest that for many years to come the student of living matter will have much more need for an understanding of physical chemistry than for a knowledge of quantum mechanics. However much one may marvel at the variety and versatility of living things, it cannot be denied that all organisms are in one sense physico-chemical machines. Ingenious and baffling as their structure and function may seem to be, it is therefore proper, in attempting to understand them, to compare their component parts with those in- animate systems which the physical chemist now understands more or less thor- oughly.
    [Show full text]
  • Biophysics 1
    Biophysics 1 on interactions between proteins involved in Notch signaling using BIOPHYSICS modern biophysical methods. Thermodynamics of association and allosteric effects are determined by spectroscopic, ultracentrifugation, http://biophysics.jhu.edu/ and calorimetric methods. Atomic structure information is being obtained by NMR spectroscopy. The ultimate goal is to determine the The Department of Biophysics offers programs leading to the B.A., M.A., thermodynamic partition function for a signal transduction system and and Ph.D. degrees. Biophysics is appropriate for students who wish interpret it in terms of atomic structure. to develop and integrate their interests in the physical and biological sciences. NMR Spectroscopy (Dr. Lecomte) Research interests in the Department cover experimental and Many proteins require stable association with an organic compound computational, molecular and cellular structure, function, and biology, for proper functioning. One example of such “cofactor” is the heme membrane biology, and biomolecular energetics. The teaching and group, a versatile iron-containing molecule capable of catalyzing a research activities of the faculty bring its students in contact with broad range of chemical reactions. The reactivity of the heme group biophysical scientists throughout the university. Regardless of their choice is precisely controlled by interactions with contacting amino acids. of research area, students are exposed to a wide range of problems of Structural fluctuations within the protein are also essential to the fine- biological interest. For more information, and for the most up-to-date list tuning of the chemistry. We are studying how the primary structure of of course offerings and requirements, consult the department web page at cytochromes and hemoglobins codes for heme binding and the motions biophysics.jhu.edu (http://biophysics.jhu.edu/).
    [Show full text]
  • Graduate Group in Biochemistry and Molecular Biophysics General Information for Incoming Students
    Graduate Group in Biochemistry and Molecular Biophysics General Information for Incoming Students Student mailboxes are located on the left as you enter the Mail Room (257 Anatomy-Chemistry Building) of the Dept. of Biochemistry and Biophysics. Use the following address to have mail sent to you at this location: Department of Biochemistry and Biophysics, 257 Anatomy-Chemistry Bldg., Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104- 6059. The Student Room is located in 250 Anatomy-Chemistry Building. Keys to this room have been placed in your mailbox. The room has two computers (1 MAC, 1 PC) and a printer. Please make sure the door is locked and securely closed when you leave the room. Lockers: Please contact Kelli McKenna if you would like a locker. They are located in the hallway outside of Rm 234 Anatomy- Chemistry. Advising: You will be meeting individually with the Advising Committee to select your fall courses and for guidance on your rotations. Course registration forms should be returned to Kelli McKenna as soon as possible after your meeting. Any changes in your fall schedule should be made within two weeks of the start of the semester and need to be approved by one of the members of the Advising Committee. Lab Rotation Approval forms are to be completed by Friday, September 13, 2021. You can find the forms for course registration and lab rotation on the BMB webpage: www.med.upenn.edu/bmbgrad under the resources page. Seminars which you are expected to attend: · Raiziss Rounds: Thursdays at noon (Austrian Auditorium, Clinical Research Building).
    [Show full text]
  • Physics, Biology and the Origin of Life: the Physicians' View Geoffrey Goodman Phd1 and M
    IMAJ • VOL 13 • DeceMber 2011 PERSPECTIVE Physics, Biology and the Origin of Life: The Physicians' View Geoffrey Goodman PhD1 and M. Eric Gershwin MD2 1Kfar Vradim, Israel 2Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA environment and were very much concerned with the insepa- ABSTRACT: Physicians have a great interest in discussions of life and its rable issue of 'what' is life and 'how' it relates to inanimate origin, including life's persistence through successive cycles matter. Physicians of those eras were more concerned about of self-replication under extreme climatic and man-made religion and the role of man and God than about physical sci- trials and tribulations. We review here the fundamental ence. One wonders what they would think today, with physical processes that, contrary to human intuition, life may be science dominated and puzzled by the apparent incompatibility seen heuristically as an ab initio, fundamental process between two fundamental concepts: general relativity (gravi- at the interface between the complementary forces of tational) theory that views matter-energy as an expression of gravitation and quantum mechanics. Analogies can predict a time-space continuum and quantum theory that considers applications of quantum mechanics to human physiology matter-energy in terms of discrete quantities (quanta) and in addition to that already being applied, in particular to waves and their counterintuitively weird behavior. The long- aspects of brain activity and pathology. This potential will also extend eventually to, for example, autoimmunity, held desire to unify these two fundamental laws of physics in genetic selection and aging.
    [Show full text]
  • Neuroreceptor Activation by Vibration-Assisted Tunneling
    OPEN Neuroreceptor Activation by SUBJECT AREAS: Vibration-Assisted Tunneling BIOPHYSICAL CHEMISTRY Ross D. Hoehn1, David Nichols2, Hartmut Neven3 & Sabre Kais4,5,6 MECHANISM OF ACTION 1Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA, 2Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA,3 Google, Venice, CA 90291, USA,4 Department of Received 5 20 October 2014 Chemistry, Purdue University, West Lafayette, IN 47907, USA, Departments of Physics, Purdue University, West Lafayette, IN 47907, USA,6 Qatar Environment and Energy Research Institute, Qatar Foundation, Doha, Qatar. Accepted 20 March 2015 G protein-coupled receptors (GPCRs) constitute a large family of receptor proteins that sense molecular Published signals on the exterior of a cell and activate signal transduction pathways within the cell. Modeling how an 24 April 2015 agonist activates such a receptor is fundamental for an understanding of a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as a model for the mechanism by which olfactory GPCRs are activated by a bound agonist. We apply this hyothesis to GPCRs within the mammalian nervous system Correspondence and using quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share requests for materials a particular IET spectral aspect both amongst each other and with the serotonin molecule: a peak whose should be addressed to intensity scales with the known agonist potencies. We propose an experiential validation of this model by S.K. (kais@purdue. utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its deuterated isotopologues; we also provide theoretical predictions for comparison to experiment.
    [Show full text]
  • BS in Biophysics (285720) MAP Sheet Life Sciences, Cell Biology and Physiology for Students Entering the Degree Program During the 2021-2022 Curricular Year
    BS in Biophysics (285720) MAP Sheet Life Sciences, Cell Biology and Physiology For students entering the degree program during the 2021-2022 curricular year. University Core and Graduation Requirements Suggested Sequence of Courses University Core Requirements: FRESHMAN YEAR JUNIOR YEAR Requirements #Classes Hours Classes 1st Semester 5th Semester First-Year Writing or American Heritage 3.0 CELL 360 3.0 Religion Cornerstones CELL 120 (Biological Science) 3.0 CHEM 481 3.0 Teachings and Doctrine of The Book of 1 2.0 REL A 275 CHEM 105 4.0 PHSCS 220 3.0 Mormon MATH 112 (Languages of Learning & Quantitative Reasoning) 4.0 PHSCS 225 2.0 Religion Cornerstone Course 2.0 Religion Elective 2.0 Jesus Christ and the Everlasting Gospel 1 2.0 REL A 250 Total Hours 16.0 Mentored Lab Experience (CELL 495R) 1-2.0 Foundations of the Restoration 1 2.0 REL C 225 2nd Semester Total Hours 14-15.0 The Eternal Family 1 2.0 REL C 200 First-Year Writing or American Heritage 3.0 6th Semester The Individual and Society BIO 250 2.0 CELL 362 3.0 American Heritage 1-2 3-6.0 from approved list CHEM 106 3.0 CELL 363 1.0 CHEM 107 1.0 CHEM 468 3.0 Global and Cultural Awareness 1 3.0 from approved list MATH 113 4.0 Advanced Writing (WRTG 316 recommended) 3.0 Skills Religion Cornerstone Course 2.0 Global & Cultural Awareness Elective 3.0 First Year Writing 1 3.0 from approved list Total Hours 15.0 Religion Elective 2.0 Total Hours 15.0 Advanced Written and Oral Communications 1 3.0 WRTG 316 SOPHOMORE YEAR recommended 3rd Semester SENIOR YEAR MMBIO 240 3.0 7th Semester Quantitative
    [Show full text]
  • An Introductory Treatise on Biophysics - M.I.El Gohary
    FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. III - An Introductory Treatise On Biophysics - M.I.El Gohary AN INTRODUCTORY TREATISE ON BIOPHYSICS M.I.El Gohary Faculty of Science, Al Azhar University, Cairo, Egypt Keywords: Biophysics, interdisciplinary, responsiveness, spermatozoon, budding, irritability, adaptation, mitosis, Auxin, regulator, protozoa, macromolecules, monomers, covalent bonds, aggregate, free energy, hydrocarbons, DNA and RNA, unfold, ribonuclease, catalyst, enzyme-substrate, thiamine, ribosomes, solar energy, adenosine triphosphate, transferase, phosphorylation, photosynthesis, chlorophyll, photophase, dark reaction, anaerobic, aerobic, respiratory pathway, diffusion, random motion, frictional force, macromolecules, random walk, average squared displacement, probability, Fick’s diffusion constant, Fick’s law, inhomogeneous equation, osmosis, semipermeable, osmotic pressure, hypertonic, isotonic, turgor pressure, hydrophobic, hydrophilic, lipid, trilaminar, Myelin, phospholipid, Mosaic, transport, simple diffusion, solute, solubility, electric charge, selective permeability, ion channels, electrochemical gradient, compartment, plasma, sodium pump, permeability, field theory, net flux, selectivity, reversal potential, diffraction, crystallography, Bragg equation, markers, structural organization, detector, magnetic moment, resonance, magnetic dipole, gyromagnetic ratio, the chemical shift, resolution, patch-clamp, food chain, producers, consumers, decomposers, heterotrophic, heterotrophs, biosphere,
    [Show full text]
  • Biophysics and Systems Biology of Cellular Responses to Perturbations
    Biophysics and systems biology of cellular responses to perturbations. [email protected] Castellani G.C., Remondini D., Giampieri E., de Oliveira L., Sala C., Menichetti G., Virelli A., Zironi I. Dipartimento di Fisica e Astronomia, Università di Bologna Dipartimento di Fisica Università di Bologna,and INFN Galvani Center for Biophysics, Bioinformatics and Biocomplexity via B.Pichat 6/2 ,Bologna, 40127, Italy IBNS & Physics Department Brown University Providence RI USA Trieste 27-09-2013 Centro Interdipartimentale “L. Galvani” (CIG) Università di Bologna Italy Bologna Center for Biocomplexity 2000: L. Galvani Center for integrated studies of Biophysics Bioinformatics and Biocomplexity ( http://www.centrogalvani.unibo.it ) including Systems Biology, Genomics of Longevity and Laser-Plasma Physics. Bio-immuno-pathological group: expertise in cell culture, sorting and omics measurements: is one of the leading laboratory in Europe and in the World for the study of Aging and senescence in humans, including the centenarians; Biophysics group: decennial activity in the field of complex cellular function modeling and advanced data analysis, and recently is developing biophysical measurements as patch clamp and fluorescence microscopy. An intriguing aspect of Radiation effect is the sharing of mechanisms with cellular senescence, organismic aging and LDR-induced carcinogenesis in humans as: e.g. the Free radical theory (FRT). Harman in the 1950s, . 1) the rate of living theory, which holds that lifespan is an inverse function of metabolic
    [Show full text]
  • Open Position in Biophysics/Chemical Biology
    Open position in Biophysics/Chemical Biology Our laboratory of Biophysical Chemistry of Macromolecules (LCBM) at the EPFL in Lausanne, Switzerland (www.epfl.ch/labs/lcbm/) offers a PhD position in the fields of biophysics / chemical biology. Our main focus is to understand the structure and function of chro‐ matin and its role in transcription regulation using a combination of chemistry and biophysics. Recently, our laboratory observed how pioneer transcription factors (pTFs) can access closed chromatin (Mivelaz et al., Molecular Cell 2020). Based on this study and the methods developed therein, we are now investigating molecular mechanisms of chromatin remodeling controlled by pTFs and chromatin remodel‐ ers, using genetics, chemical biology, and single‐molecule biophysics. Within this project, we offer PhD positions, as well as postdoc positions. Your profile (for the PhD position): – A master or equivalent degree in biochemistry, bio‐ physics or chemical biology – Experience in working in a biochemistry or biophysics (imaging) laboratory. – Good knowledge in written and oral English. – Highly motivated for discovering new molecular mechanisms in a challenging environment. – Interest for interdisciplinary projects. – A passion for biophysical chemistry and genetic regulation at the highest level. Application/selection procedure: 1. Send a Letter of motivation, a CV, a summary of previously done research and the contact information of 3 referees to [email protected]. Ideally, we receive your ap‐ plication until March 15, 2021. 2. Selected candidates will be invited for a virtual interview, and, in a second round a virtual visit (including a seminar and meetings with PhD students and postdocs). 3. If you need further information, visit https://lcbm.epfl.ch/fierz/, or contact [email protected].
    [Show full text]
  • Suggested Guidelines for Starting an Undergraduate Biophysics Program
    Suggested Guidelines for Starting an Undergraduate Biophysics Program A biophysics major explores the bridge between biology and physics, applying quantitative methods to solve problems in biology, medicine, and related fields. A biophysics program is interdisciplinary, drawing from coursework in physics, biology, chemistry, mathematics, and statistics. It combines a broad science curriculum with physical and mathematical rigor in prepa- ration for diverse careers. The need for STEM education is well documented. Studies including the influential 2007 National Academies report “Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future” have warned of potential weaknesses existing in the U.S. STEM education system, and how addressing it relates to national prosperity and power [1]. In the succeeding decade, positive efforts have been made over the entire educational spectrum. Still, there may be a need for over one million more college graduates in STEM fields above the current trajectory in the coming decade [2]. Documented trends indicate the need for interdisciplinary STEM options in particular. For example, the U.S. Department of Labor, Bureau of Labor Statistics projects, from 2014-2024, an increase in employment among interdisciplinary fields like bio- medical engineering (23%), environmental science (11%), and biochemistry/biophysics (8%), above the projected increase for fields like microbiology (4%), physics (7%), and chemistry (3%) [3]. As an interdisciplinary STEM option, a biophysics program brings together faculty from across disciplines, encouraging inter- actions, and potentially leading research and funding opportunities. Further, an undergraduate biophysics program may have a relatively easy implementation, as much of the core coursework (physics, chemistry, biology, and mathematics) is already offered at most institutions.
    [Show full text]