Prospecção De Metabólitos Secundários E

Total Page:16

File Type:pdf, Size:1020Kb

Prospecção De Metabólitos Secundários E NATHÁLIA LUÍZA ANDREAZZA PROSPECÇÃO DE METABÓLITOS SECUNDÁRIOS E FITODERIVADOS BIOATIVOS EM Guatteria blepharophylla (ANNONACEAE) E Indigofera truxillensis (FABACEAE) PARA APLICAÇÃO EM TERAPIA FOTODINÂMICA E DESENVOLVIMENTO DE PROCEDIMENTOS ANALÍTICOS Campinas, 2014 i ii Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Andreazza, Nathalia Luiza, 1984- An25p AndProspecção de metabólitos secundários e fitoderivados bioativos em Guatteria blepharophylla (Annonaceae) e Indigofera truxillensis (Fabaceae) para aplicação em terapia fotodinâmica e desenvolvimento de procedimentos analíticos / Nathalia Luiza Andreazza. – Campinas, SP : [s.n.], 2014. AndOrientador: Marcos José Salvador. AndTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. And1. Guatteria. 2. Indigofera. 3. Metabolismo secundário. 4. Compostos bioativos. I. Salvador, Marcos José,1971-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: Prospecting of secondary metabolites and phytoderivatives from Guatteria blepharophylla (Annonaceae) and Indigofera truxillensis (Fabaceae) for photodynamic therapy application and development of analytical procedures Palavras-chave em inglês: Guatteria Indigofera Secondary metabolism Bioactive compounds Área de concentração: Biologia Vegetal Titulação: Doutora em Biologia Vegetal Banca examinadora: Marcos José Salvador [Orientador] Elita Scio Fontes Maria Silvana Alves Paulo Cesar Pires Rosa Claudia Regina Baptista Haddad Data de defesa: 27-03-2014 Programa de Pós-Graduação: Biologia Vegetal iv Powered by TCPDF (www.tcpdf.org) vi RESUMO Neste trabalho realizou-se estudo físico, químico e biológico para a prospecção de metabólitos secundários e fitoderivados em Guatteria blepharophylla (Annonaceae) e Indigofera truxillensis (Fabaceae) para aplicação em Terapia Fotodinâmica (PDT). A caracterização fitoquímica dos extratos metanólicos das espécies estudadas resultou no isolamento de cinco alcaloides isoquinolínicos de G. blepharophylla e um alcaloide bis- indólico de I. truxillensis. A investigação fotofísica dos extratos, frações e das substâncias isomoschatolina e índigo, revelou perfis de absorção na região entre 600 a 800 nm. Nas análises fotoquímicas, os extratos e fração alcaloídica de G. blepharophylla apresentaram resultados sugestivos quanto a produção de oxigênio singleto, assim como a substância isomoschatolina. Já em ensaio microbiológico in vitro com o emprego de substâncias supressoras de espécies reativas de oxigênio, observou-se a prevalência do mecanismo fotoquímico do tipo II para a isomoschatolina e do tipo I para o índigo. Nos ensaios biológicos de PDT antimicrobiana e antitumoral com os extratos, frações e as substâncias isoladas isomoschatolina e índigo observaram-se, para todas as estas amostras-teste, resultados efetivos na inativação de algumas das cepas indicadoras com redução do crescimento microbiano (UFC/ml) superior a 90%, assim como diminuição da sobrevida celular para as linhagens humanas de fibroblasto (3T3) e melanoma (UACC-62), sendo observado efeito em menores concentrações somente para UACC-62 quando associado à irradiação laser (660nm). Em ensaio biológico na presença das substâncias CaCl2 e MgCl2, a ação biocida dos alcaloides isomoschatolina e índigo, na fotoinativação da cepa Escherichia coli ATCC 10799 foi intensificada se comparado aos grupos controles. Portanto o conjunto de resultados observados sugerem que os extratos brutos e frações alcaloídicas das duas vii plantas estudadas e os alcaloides isomoschatolina e índigo apresentaram fotoatividade frente a bactérias, leveduras e frente à cultura de células de melanoma em concentração subinibitória. Na análise da interação dos alcaloides fotossensibilizantes berberina e isomoschatolina com LDL em modelos celulares, a caracterização dos complexos alcaloide/LDL permitiu identificar uma primeira classe de fixação, denominada classe P, a partir de alterações na fluorescência da apoproteína B-100. Para berberina e isomoschatolina verificou-se que cerca de 250 e 135 moléculas se complexam a porção proteica da partícula de LDL e proximidades, apresentando constante de afinidade iguais a 1,05.108 M-1 e 5,06.107 M-1, respectivamente. Uma segunda classe de fixação, chamada de classe L, determinada somente para a berberina, foi caracterizada a partir de alterações na fluorescência deste alcaloide e correspondeu a fixação de cerca de 80 moléculas de berberina na porção lipídica da partícula de LDL, com uma constante de afinidade de 7,10.107 M-1. Estes valores revelam que o processo predominante de interação da berberina com o LDL é a fixação de classe P. Nos ensaios em nível celular, realizados com a berberina, verificou-se que a sua complexação com o LDL não prejudica o seu reconhecimento pelos receptores apoproteína B/E da superfície membranar das células U87MG e que a sua internalização pode ocorrer associada o LDL pela via de endocitose. No entanto, não foi verificado acumulo de berberina nos lisossomos, mas apenas nas mitocôndrias, o que sugere que após a internalização, o alcaloide rapidamente sofre um processo de redistribuição intracelular. Para células cultivas em Ultroserum G, observou-se aumento da produção de produtos da peroxidação lípidica nas células tratadas com berberina complexada em relação àquelas tratadas com o alcaloide livre, nas doses de irradiação de 50 e 100 J/cm2. Todas estas evidências revelam a possibilidade de complexação de ambos os alcaloides com o LDL como molécula carreadora para aplicação em PDT antitumoral, sendo viii que para berberina a associação não só aumenta sua incorporação celular, assim como sua efetividade como agente fotoativo. ix x ABSTRACT In this work it was carried out chemical and biological studies for secondary metabolites and phyto-derivatives prospecting from Guatteria blepharophylla (Annonaceae) and Indigofera truxillensis (Leguminosae) for antimicrobial and antitumor photodynamic therapy (PDT) application. The phytochemical characterization of the methanol extracts from both species resulted in the isolation of five isoquinoline alkaloids from G. blepharophylla, isomoschatoline, O-methylmoschatoline, liriodenine, subsessiline and lysicamine, and one bis-indole alkaloid, indigo, from I. truxillensis. Photophysical characterization of crude extracts, fractions and the substances isomoschatoline and indigo showed absorption profiles in the region between 600 to 800 nm and fluorescence emission when excited at their absorption wavelenght. In photochemical analysis, at 1,3-DPBF probe assay, crude extracts and alkaloidal fraction from G. blepharophylla showed positive results regarding singlet oxygen production, as well as isomoschatoline. At in vitro microbiological assay with reactive oxygen species suppressors, it was observed the prevalence of type II photochemical mechanism for isomoschatoline and type I for indigo, as also suggested by 1,3- DPBF assay results. In the antimicrobial and antitumor PDT biological assays, with crude extracts, fractions, isomoschatoline and indigo, effective results for microbial strains inactivation were found with microbial growth reduction (CFU/mL) superior to 90%, as well as decreased cell survival of human fibroblast (3T3) and melanoma (UACC-62) cell lines, in which this effect for the latter, was observed at lower concentrations when combined with laser irradiation. It was also found that both isomoschatoline and indigo exhibit enhanced photodynamic antimicrobial activity against Gram-negative bacteria (Escherichia coli ATCC 10799 strain) in comparison to control groups, when CaCl2 and MgCl2 additives were employed. Therefore, xi in light of all assays results it is suggested that crude extracts and alkaloid fractions from both plant species and the alkaloids isomoschatoline and indigo showed photoactivity against bacteria and yeasts strains and against melanoma human cell line at sub-inhibitory concentration when associated with laser irradiation at 660 nm. At interaction studies between photosensitizing alkaloids berberine and isomoschatoline with LDL and cellular models, changes in LDL’s Apoprotein B-100 fluorescence allowed the identification of a first class of substances fixation in this particle called, P fixation class. For berberine and isomoschatoline it was found that about 250 and 135 molecules, respectively complexes to LDL’s protein portion and its vicinity, leading to affinities constants equals to 1,05.108 M-1 and 5,06.107 M- 1, respectively. A second fixation class, the L fixation class, accessed only for berberine, was obtained by changes in the alkaloid fluorescence and correspond to 80 molecules attached to LDL’s lipid portion, leading to affinity constant equal to 7,10.107 M-1. These results reveal that the predominant process of berberine interaction with LDL is by P fixation class. At cellular level assays, performed only with berberine, it was found that the alkaloid complexation with LDL did not affect LDL recognition by apoprotein B/E membrane surface receptors of U87MG cells and that berberine internalization may occur associated with the particle via LDL endocytosis. However, there was no accumulation of berberine found in lysosomes. Mitochondria accumulation was observed suggesting that, after internalization, this alkaloid undergoes rapid intracellular redistribution process. At cells cultured with Ultroserum G and treated with complexed berberine
Recommended publications
  • Lista Plantas, Reserva
    Lista de Plantas, Reserva, Jardín Botanico de Vallarta - Plant List, Preserve, Vallarta Botanical Garden [2019] P 1 de(of) 5 Familia Nombre Científico Autoridad Hábito IUCN Nativo Invasor Family Scientific Name Authority Habit IUCN Native Invasive 1 ACANTHACEAE Dicliptera monancistra Will. H 2 Henrya insularis Nees ex Benth. H NE Nat. LC 3 Ruellia stemonacanthoides (Oersted) Hemsley H NE Nat. LC 4 Aphelandra madrensis Lindau a NE Nat+EMEX LC 5 Ruellia blechum L. H NE Nat. LC 6 Elytraria imbricata (Vahl) Pers H NE Nat. LC 7 AGAVACEAE Agave rhodacantha Trel. Suc NE Nat+EMEX LC 8 Agave vivipara vivipara L. Suc NE Nat. LC 9 AMARANTHACEAE Iresine nigra Uline & Bray a NE Nat. LC 10 Gomphrena nitida Rothr a NE Nat. LC 11 ANACARDIACEAE Astronium graveolens Jacq. A NE Nat. LC 12 Comocladia macrophylla (Hook. & Arn.) L. Riley A NE Nat. LC 13 Amphipterygium adstringens (Schlecht.) Schiede ex Standl. A NE Nat+EMEX LC 14 ANNONACEAE Oxandra lanceolata (Sw.) Baill. A NE Nat. LC 15 Annona glabra L. A NE Nat. LC 16 ARACEAE Anthurium halmoorei Croat. H ep NE Nat+EMEX LC 17 Philodendron hederaceum K. Koch & Sello V NE Nat. LC 18 Syngonium neglectum Schott V NE Nat+EMEX LC 19 ARALIACEAE Dendropanax arboreus (l.) Decne. & Planchon A NE Nat. LC 20 Oreopanax peltatus Lind. Ex Regel A VU Nat. LC 21 ARECACEAE Chamaedorea pochutlensis Liebm a LC Nat+EMEX LC 22 Cryosophila nana (Kunth) Blume A NT Nat+EJAL LC 23 Attalea cohune Martius A NE Nat. LC 24 ARISTOLOCHIACEAE Aristolochia taliscana Hook. & Aarn. V NE Nat+EMEX LC 25 Aristolochia carterae Pfeifer V NE Nat+EMEX LC 26 ASTERACEAE Ageratum corymbosum Zuccagni ex Pers.
    [Show full text]
  • Revision of Oxandra (Annonaceae)
    Blumea 61, 2016: 215–266 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/000651916X694283 Revision of Oxandra (Annonaceae) L. Junikka1, P.J.M. Maas2, H. Maas-van de Kamer2, L.Y.Th. Westra2 Key words Abstract A taxonomic revision is given of the Neotropical genus Oxandra (Annonaceae). Within the genus 27 spe- cies are recognized, 4 of which are new to science. Most of the species are occurring in tropical South America, Annonaceae whereas a few (6) are found in Mexico and Central America and two in the West Indies (Greater and Lesser Antilles). Neotropics A key to all species is provided. The treatment includes chapters about the history of the genus and morphology. Oxandra All species are fully described, including full synonymy, notes on distribution and ecology, field observations (when taxonomy available), vernacular names (when given), and mostly short notes about relationships of the species concerned. For vernacular names each species a distribution map is made. At the end of the revision a complete list of vernacular names is included. Published on 7 December 2016 INTRODUCTION the genus in his Malmea subfamily and the Malmea tribe with Bocageopsis, Cremastosperma, Ephedranthus, Malmea, Ony- The genus Oxandra was first published in 1841 by A. Richard chopetalum, Pseudephedranthus, Pseudoxandra, Ruizoden- with the two species O. virgata (Sw.) A.Rich. (= O. lanceolata dron, Unonopsis, and the African genus Annickia (as Enantia, (Sw.) Baill. and O. laurifolia (Sw.) A.Rich. Oxandra was first now placed by Chatrou et al. (2012) in the subfamily Malme- classified by Baillon (1868a) in the tribe Anoneae Endl.
    [Show full text]
  • Phytochemistry and Pharmacological Activities of Annona Genus: a Review
    REVIEW ARTICLE Current Research on Biosciences and Biotechnology 2 (1) 2020 77-88 Current Research on Biosciences and Biotechnology www.crbb-journal.com Phytochemistry and pharmacological activities of Annona genus: A review Siti Kusmardiyani, Yohanes Andika Suharli*, Muhamad Insanu, Irda Fidrianny Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Indonesia ABSTRACT Plants have been significantly used in traditional medicine by a variety of societies since Article history: antiquity, and knowledge of their safety, efficacy, and quality value can be developed through Received 15 Jul 2020 further research. The genus Annona, consisting of 119 species, has been extensively researched Revised 13 Aug 2020 and proven to have a diverse range of pharmacological activities such as antioxidant, antiulcer, Accepted 14 Aug 2020 antidiarrheal, and antiparasitic. This is because the Annona plants possess a great number of Available online 31 August 2020 phytochemicals found in almost every part of the plant, which can be isolated to be developed into herbal medicine. Phytochemicals are classified into several classes, such as Annonaceous Keywords: acetogenin, alkaloids, flavonoids, and essential oils. This article was created by collecting 124 Annona genus research articles which discuss phytochemical compounds from 20 species and the isolated compound pharmacological activity from 13 species. pharmacological activity phytochemical compounds traditional medicine *Corresponding author: [email protected] DOI: 10.5614/crbb.2020.2.1/KNIA7708 e-ISSN 2686-1623/© 2020 Institut Teknologi Bandung. All rights reserved 1. Introduction Based on the great potential of these plants as drug candidates Natural products, specifically those derived from plants, have and the large body of available research on the Annona plant, a helped mankind in many aspects of life, particularly medicine.
    [Show full text]
  • Anatomical Structure of Barks in Neotropical Genera of Annonaceae
    Ann. Bot. Fennici 44: 79–132 ISSN 0003-3847 Helsinki 28 March 2007 © Finnish Zoological and Botanical Publishing Board 2007 Anatomical structure of barks in Neotropical genera of Annonaceae Leo Junikka1 & Jifke Koek-Noorman2 1) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland (present address: Botanic Garden, P.O. Box 44, FI-00014 University of Helsinki, Finland) (e-mail: [email protected]) 2) National Herbarium of the Netherlands, P.O. Box 80102, 3508 TC Utrecht, The Netherlands (e-mail: [email protected]) Received 1 Oct. 2004, revised version received 23 Aug. 2006, accepted 21 Jan. 2005 Junikka, L. & Koek-Noorman, J. 2007: Anatomical structure of barks in Neotropical genera of Annonaceae. — Ann. Bot. Fennici 44 (Supplement A): 79–132. The bark anatomy of 32 Neotropical genera of Annonaceae was studied. A family description based on Neotropical genera and a discussion of individual bark compo- nents are presented. Selected character states at the family and genus levels are sur- veyed for identification purposes. This is followed by a discussion on the taxonomical and phylogenetic relevance of bark characters according to a phylogram in preparation based on molecular characters. Although the value of many bark anatomical characters turned out to be insignificant in systematic studies of the family, some features lend support to recent phylogenetic results based on morphological and molecular data sets. The taxonomically most informative features of the bark anatomy are sclerification of phellem cells, shape of fibre groups and occurrence of crystals in bark components. Key words: anatomy, Annonaceae, bark, periderm, phloem, phylogeny, rhytidome, taxonomy Introduction collections and the development of some novel methods a multidisciplinary programme on Anno- Woody members of the Annonaceae are one of naceae was embarked on in 1983 at the Univer- the most species-rich components in the tropi- sity of Utrecht.
    [Show full text]
  • Plants of the Annonaceae Traditionally Used As Antimalarials: a Review1
    315 PLANTS OF THE ANNONACEAE TRADITIONALLY USED AS ANTIMALARIALS: A REVIEW1 GINA FRAUSIN2 , RENATA BRAGA SOUZA LIMA3, ARI DE FREITAS HIDALGO4, PAUL MAAS5, ADRIAN MARTIN POHLIT6 ABSTRACT- Species of the Annonaceae family are used all over the tropics in traditional medicine in tropical regions for the treatment of malaria and other illnesses. Phytochemical studies of this family have revealed chemical components which could offer new alternatives for the treatment and control of malaria. Searches in scientific reference sites (SciFinder Scholar, Scielo, PubMed, ScienceDirect and ISI Web of Science) and a bibliographic literature search for species of Annonaceae used traditionally to treat malaria and fever were carried out. This family contains 2,100 species in 123 genera. We encountered 113 articles reporting medicinal use of one or more species of this family including 63 species in 27 genera with uses as antimalarials and febrifuges. Even though the same species of Annonaceae are used by diverse ethnic groups, different plant parts are often chosen for applications, and diverse methods of preparation and treatment are used. The ethanol extracts of Polyalthia debilis and Xylopia aromatica proved to be quite active against Plasmodium falciparum in vitro (median inhibition concentration, IC50 < 1.5 µg/mL). Intraperitoneal injection of Annickia chlorantha aqueous extracts (cited as Enantia chlorantha) cleared chloroquine-resistant Plasmodium yoelii nigeriensis from the blood of mice in a dose-dependant manner. More phytochemical profiles of Annonaceous species are required; especially information on the more commonly distributed antimalarial compounds in this family. Index terms: Malaria, Plasmodium falciparum, Plasmodium yoelii nigeriensis. PLANTAS DA FAMILIA ANNONACEAE TRADICIONALMENTE USADAS COMO ANTIMALÁRICOS: UMA REVISÃO RESUMO- Espécies da família Annonaceae têm amplo uso na medicina tradicional em regiões tropicais para o tratamento da malária e de sintomas como febres, dentre outras doenças.
    [Show full text]
  • The Effects of Habitat Disturbance on the Populations of Geoffroy's Spider Monkeys in the Yucatan Peninsula
    The Effects of Habitat Disturbance on the Populations of Geoffroy’s Spider Monkeys in the Yucatan Peninsula PhD thesis Denise Spaan Supervisor: Filippo Aureli Co-supervisor: Gabriel Ramos-Fernández August 2017 Instituto de Neuroetología Universidad Veracruzana 1 For the spider monkeys of the Yucatan Peninsula, and all those dedicated to their conservation. 2 Acknowledgements This thesis turned into the biggest project I have ever attempted and it could not have been completed without the invaluable help and support of countless people and organizations. A huge thank you goes out to my supervisors Drs. Filippo Aureli and Gabriel Ramos- Fernández. Thank you for your guidance, friendship and encouragement, I have learnt so much and truly enjoyed this experience. This thesis would not have been possible without you and I am extremely proud of the results. Additionally, I would like to thank Filippo Aureli for all his help in organizing the logistics of field work. Your constant help and dedication to this project has been inspiring, and kept me pushing forward even when it was not always easy to do so, so thank you very much. I would like to thank Dr. Martha Bonilla for offering me an amazing estancia at the INECOL. Your kind words have encouraged and inspired me throughout the past three years, and have especially helped me to get through the last few months. Thank you! A big thank you to Drs. Colleen Schaffner and Jorge Morales Mavil for all your feedback and ideas over the past three years. Colleen, thank you for helping me to feel at home in Mexico and for all your support! I very much look forward to continue working with all of you in the future! I would like to thank the CONACYT for my PhD scholarship and the Instituto de Neuroetología for logistical, administrative and financial support.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • Nomenclatural and Taxonomic Notes on Annona (Annonaceae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Rainer H. Artikel/Article: Nomenclatural and taxonomic notes on Annona (Annonaceae). 513-524 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 513-524 Wien, Dezember 2001 Nomenclatural and taxonomic notes on Annona (Annonaceae) H. Rainer* Abstract In the course of monographic studies on the genus Annona (Annonaceae) some cases of nomenclatural and taxonomic changes and need for typifications turned up and are herewith presented. Raimondia is included in Annona due to its general resemblance in morphological and anatomical characters, its species already described as Annona are reestablished, and one new combination is made. The new combinations are Annona cacans WARM, subsp. glabriuscula (R.E.FR.) H.RAWER and Annona deceptrix (WESTRA) H.RAINER. Key words: Annonaceae, Annona, Raimondia, Flora Neotropica, typification. Zusammenfassung Während der monographischen Studien an der Gattung Annona (Annonaceae) wurden einige nomenkla- torische und taxonomische Änderungen evident, sowie in einigen Fällen Typifizierungen notwendig, die hier präsentiert werden. Die Gattung Raimondia wird wegen ihrer weitgehenden Übereinstimmung in mor- phologischen wie anatomischen Merkmalen in Annona eingegliedert. Die schon unter Annona beschriebe- nen Arten werden wiederhergestellt und eine Neukombination durchgeführt. Die beiden Neukombinationen betreffen Annona cacans WARM, subsp. glabriuscula (R.E.FR.) H.RAINER und Annona deceptrix (WESTRA) H.RAINER. Introduction In the course of the studies for a monograph of the neotropical taxa of the genus Annona (Annonaceae), the number of collections increased substantially compared to the mate- rial available to FRIES (1931), the last comprehensive treatment of the genus.
    [Show full text]
  • Inventario De Las Plantas Cubanas Silvestres Parientes De Las Cultivadas De Importancia Alimenticia, Agronómica Y Forestal
    Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal por Werner Greuter y Rosa Rankin Rodríguez A Checklist of Cuban wild relatives of cultivated plants important for food, agriculture and forestry by Werner Greuter and Rosa Rankin Rodríguez Botanischer Garten und Botanisches Museum Berlin Jardín Botánico Nacional, Universidad de La Habana Publicado en el Internet el 22 marzo 2019 Published online on 22 March 2019 ISBN 978-3-946292-33-3 DOI: https://doi.org/10.3372/cubalist.2019.1 Published by: Botanischer Garten und Botanisches Museum Berlin Zentraleinrichtung der Freien Universität Berlin Königin-Luise-Str. 6–8, D-14195 Berlin, Germany © 2019 The Authors. This work is distributed under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0), which permits unrestricted use provided the original author and source are credited (see https://creativecommons.org/licenses/by/4.0/) Greuter & Rankin – Parientes Cubanos Silvestres de Plantas Cultivadas 3 Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal Werner Greuter & Rosa Rankin Rodríguez Introducción Este Inventario se generó para servir de base a los trabajos de la reunión anual del Grupo de Especialistas en Plantas Cubanas de la Comisión para la supervivencia de las especies de la UICN en La Habana, Cuba, del 13 al 15 de Marzo del 2019. Abarca 57 familias y 859 taxones de plantas vasculares de la flora espontánea cubana congenéricas con las plantas útiles de importancia al nivel global y que puedan servir para enriquecer su patrimonio genético en el desarrollo de nuevas variedades con mejores propiedades de productividad y/o resistencia y cuya conservación por ende es de importancia prioritaria para la sobrevivencia de la raza humana (ver Meta 13 de las Metas nacionales cubanas para la diversidad biológica 2016-2020).
    [Show full text]
  • Plants with Anti‑Leishmania Activity: Integrative Review from 2000 to 2011
    PHCOG REV. REVIEW ARTICLE Plants with anti‑Leishmania activity: Integrative review from 2000 to 2011 Ana Maria G. Brito, Derivaldo dos Santos, Sheyla A. Rodrigues, Renan G. Brito1, Lauro Xavier-Filho Institute of Technology and Research, Department of Biomedicine, Tiradentes University, Aracaju-SE, 1 Department of Physiology, Federal University of Sergipe, São Cristóvão-SE, Brazil Submitted: 04-10-2012 Revised: 29-12-2012 Published: 01-06-2013 ABSTRACT The search for more effective new drugs to treat Leishmaniasis is undoubtedly relevant. Our objective in this study was to investigate research publications addressing plants with anti-Leishmaniasis activity. An integrative review of the literature from 2000 to 2011 was carried out in the databases such as Latin‑American and Caribbean Health Sciences (LILACS), Scientific Electronic Library Online (SciELO), and Medical Literature Analysis and Retrieval System Online (MEDLINE). In the initial search, 150 articles were found, with 25 based in LILACS, 68 in SciELO, and 46 in MEDLINE. From these data, after reading the abstracts that were available online, we excluded 12 from LILACS, 39 from SciELO, and 28 from MEDLINE for presenting article duplications. This left 61 articles to be read; however, only 18 of them answered the research questions and determined the final sample of this review. The results showed that research involving the search for new drugs against Leishmaniasis should be intensified, especially for the amastigote form, and studies with in vivo tests could become a great strategy for successfully finding new treatments for Leishmaniasis. It is believed that it is extremely important and urgent to conduct more trials in search of new effective drugs against Leishmaniasis that possess minimal adverse effects and that are easily accessible to the public.
    [Show full text]
  • Vegetation Classification and Mapping Project Report
    A Guide to Caribbean Vegetation Types: Preliminary Classification System and Descriptions Written by Alberto E. Areces-Mallea, Alan S. Weakley, Xiaojun Li, Roger G. Sayre, Jeffrey D. Parrish, Camille V. Tipton and Timothy Boucher Edited by Nicole Panagopoulos A Guide to Caribbean Vegetation Types: Preliminary Classification System and Descriptions Copyright © 1999 The Nature Conservancy. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission of the copyright holder. Reproduction for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Cover by Margaret Buck Production by Nicole Panagopoulos The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. Table of Contents Acknowledgments .................................................................................. 1 Executive Summary .............................................................................. 3 Chapter One .......................................................................................... 9 Vegetation Classification and Vegetation Mapping of the Caribbean Islands—A Review Background .......................................................................................... 9 General Classification Systems Applicable to Caribbean Tropical Vegetation ......................................................................
    [Show full text]
  • Plant Latex: a Natural Source of Pharmaceuticals and Pesticides R Ticle Ravi K
    Plant latex: A natural source of pharmaceuticals and pesticides TICLE R Ravi K. Upadhyay Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India A In recent times use of plant natural products has increased tremendously, and there is a very high demand of herbal products for therapeutic, clinical, agricultural purposes. Plant latex is a rich source of pharmaceuticals, pesticides and immune allergens. It also contains important biomolecules such as glycosides, tannins, phytosterols, Flavonoids, acetogenins and saponins, which show diverse biolgical activities against bacteria, fungi, viruses, protozoans, nematodes, insects, and cancer and tumours. It is also used EVIEW as disinfectant, anticoagulant, anti-inflammatory, antioxidant and antiproliferative agent that provides protection in wounds. It contains wide variety of industrially important metabolic substances which can be harvested, modified, quenched, and polymerized R easily for making goods and materials by up-gradation of technology. No doubt it is a future raw material for many bioengineering and biotechnological industries. Key words: Acetogenins, bioactivity, flavaonoids, plant latex, saponins INTRODUCTION substances that cause allergic reactions and induce immediate-type hypersensitivity in them. In addition Latex is a natural plant polymer secreted by highly plant latex contains wide diversity of bioactive chemicals specialized cells known as laticifers. Latex is milky fluid which showed different biological activities such as secreted by ducts of laticiferous tissue[1] and mainly anti-carcinogenic, anti-proliferative, anti-inflammatory, flow inside laticifers including roots, stems, leaves and vasodilatory, antioxidant, antimicrobial, antiparasitic and fruits of all flowering plants.[2] It is an emulsion like insecticidal. [9] It also has wider applications in the field of sticky material that exudes from various plant parts medical sciences and is used for preparation of adhesives, after having a small tissue injury.
    [Show full text]