Neuroptera: Chrysopidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fish, Various Invertebrates
Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations ................................................. -
The Chrysopidae of Canada (Neuroptera): Recent Acquisitions Chiefly in British Columbia and Yukon
.I. ENTOMOL. soc. BRIT. COLUMBIA 97. DECEMBER 2000 39 The Chrysopidae of Canada (Neuroptera): recent acquisitions chiefly in British Columbia and Yukon J. A. GARLAND 1011 CARLING AVENUE, OTTAWA, ONTARIO, CANADA KI Y 4E7 ABSTRACT Chryso pidae collected sin ce 1980 chiefly in British Co lumbi a and Yuk on, Canada, and some late additi ons co ll ected before \980, are reported. :Vinela gravida (Banks) is reported for th e first time in th e last 90 years. This is th e first supplement to th e inventory of Chryso pid ae in Can ada. Key words: Ne uroptera, Chryso pidae, Canada INTRODUCTION The chrysopid faun a of Canada, as presentl y und erstood (Garland 1984, 1985), has been full y in ve ntori ed up to 1980 (Garl and 1982). Since then , newl y co ll ected specimens in British Columbia and th e Yukon, and some older-dated specimens not previously seen, have become availabl e. The purpose of publishing th ese spec imen label data is to suppl ement th e already extensive in ve ntory oflabel data on th e Ca nadi an chrysopid fauna, thereby ex tending it to the year 2000. Materi als an d meth ods appropri ate to thi s study have been doc um ented elsewhere (Garl and 2000). All specimens reported here are depos it ed in the Spence r Entomologica l Museum, Department of Zoo logy, University of Briti sh Co lumbi a. Ac ronyms used below: BC , British Co lumbia; SK, Sas katch ewan; and YK , Yukon Territory. -
The First Green Lacewings from the Late Eocene Baltic Amber
The first green lacewings from the late Eocene Baltic amber VLADIMIR N. MAKARKIN, SONJA WEDMANN, and THOMAS WEITERSCHAN Makarkin, V.N., Wedmann, S., and Weiterschan, T. 2018. The first green lacewings from the late Eocene Baltic amber. Acta Palaeontologica Polonica 63 (3): 527–537. Pseudosencera baltica gen. et sp. nov. of Chrysopinae (Chrysopidae, Neuroptera) is described from Baltic amber. Additionally, another species, Nothochrysa? sp. (Nothochrysinae), is left in the open nomenclature. Pseudosencera bal- tica gen. et sp. nov. represents the oldest confident record of Chrysopinae. The new genus lacks the apparent forewing intramedian cell, and possesses three character states not found in other Chrysopinae: the simple AA1, the short basal crossvein between M and Cu, and 5‒6 rings of setae on the antennal flagellomeres. This genus is probably a special- ised form in a basal branch of Chrysopinae, that could not be attributed to any of the known tribes. The specimen of Nothochrysa? sp. consists only of fragments of the forewings. The late Eocene Baltic amber represents the oldest horizon where Chrysopinae and Nothochrysinae are found to coexist. It is highly likely that Chrysopidae were extremely rare in these forests. Key words: Neuroptera, Chrysopinae, Nothochrysinae, Cenozoic, Baltic amber. Vladimir N. Makarkin [[email protected]], Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. Sonja Wedmann [[email protected]], Senckenberg Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany. Thomas Weiterschan [[email protected]], Forsteler Strasse 1, 64739 Höchst Odw., Germany. Received 16 May 2018, accepted 5 July 2018, available online 23 July 2018. -
Neuroptera: Chrysopidae)
Zootaxa 3351: 1–14 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new genus of Neotropical Chrysopini (Neuroptera: Chrysopidae) FRANCISCO SOSA1 & SERGIO DE FREITAS2 1 Universidad Centroccidental “Lisandro Alvarado”, Museo Entomológico “Dr. José Manuel Osorio” (UCOB), Barquisimeto, Lara, . E-mail: [email protected] 2 Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil (deceased) Abstract Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navás, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navás 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2–8 usually with microtholi, male geni- talia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identi- fied; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species -
A Checklist of the Neuropterid Insects of British Columbia (Insecta: M Egaloptera, Neuroptera and Raphidioptera) with a Summary of Their Geographic Distribution
J. ENTOMOL. SOC. BRIT. COLUMBIA 106, DECEMBER 2009 17 A checklist of the Neuropterid insects of British Columbia (Insecta: M egaloptera, Neuroptera and Raphidioptera) with a summary of their geographic distribution GEOFFREY G.E. SCUDDER1 and ROBERT A. CANNINGS2 ABSTRACT The Neuropterid orders in British Columbia consist of the Megaloptera, Neuroptera and Raphidioptera. Twelve families containing 89 species are represented. The distribution of these species is documented with reference to the 9 terrestrial ecoprovinces in British Columbia. Collection localities are given for species represented by 5 or fewer sites. Four species, 2 of Coniopterygidae and 2 of Hemerobiidae, are considered alien intro- ductions. INTRODUCTION The first list of British Columbia (BC) order, the Neuroptera. Most of the more neuropterid insects was published by recent research on these 3 taxa in BC, Spencer (1942) at a time when the 3 orders which include both aquatic and terrestrial in this group of insects that occur in the species, was summarized by Cannings and province (Megaloptera, Neuroptera and Scudder (2001) and Scudder et al. (2001). Raphidioptera) were considered as a single M ATERIALS AND M ETHODS The list of species here considered as recorded. An ecoprovince is an area with occurring in BC follows the classification consistent climatic or oceanographic, to- of Oswald and Penny (1991) and Penny et pographic and geological history al. (1997), with some nomenclature (Meidinger and Pojar 1991, Demarchi changes published since. In the recent lit- 1996). There are 10 ecoprovinces in BC; erature, Garland and Kevan (2007) have their size and broad internal uniformity discussed the Chrysopidae, and Cannings make them ideal units for the general dis- and Cannings (2006) the Mantispidae. -
Of the World
OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES No. 147, 94 pages. December 2, 1991 GENUS-GROUP NAMES OF THE NEUROPTERA, MEGALOPTERA AND RAPHIDIOPTERA OF THE WORLD By John D. Oswald Department of Entomology, Cornell University, Ithaca, New York 14853-0999 and Norman D. Penny Department of Entomology, California Academy of Sciences, San Francisco, California 94118-4599 Abstract: Alphabetical listings of the genus-group names of extant Megaluptcra, Raphidioptera, and = Neuroptera (s. str. Planipennia) are presented. Taxonomic and nomenclatural data for each name are given. Summaries of new genus-group synonyms, unreplaced junior homonyms, names without valid type species fixations, and names based on misidentified type species are given. Complete bibliographic references are given for all names and nomenclatural acts. Contents Introduction Inlroduciion (1) The last worldwide species-level catalog of Scope (2) the order str. = Nomenclature (2) Neuroptera (s. Planipennia), and Format Arrangement of Entries (2) Hermann Hagen's 1866 Hemerobidarum Syn- General Arrangement (2) opsis Synonymica, has long been obsolete, as Subgenera (2) are the most recent revisions Synonymy (2) comprehensive Character Formals (3) of the orders Megaloptera (i.e.. Van dcr Publication Dates (3) Weele 1910) and Raphidioptera (i.e., Navas Type Species (3) [1919e] 1918). In the 120+ years since 1866, Unavailable Names (3) the number of available Homonymy (4) nomenclaturally Family-Group Taxa (4) genus-group names in the order Neuroptera Selected Taxonomic References -
Electrophoretic Studies in the Genus Chrysopa (S
Progress in World's Neuropterology. Gepp J-, H. Aspöck & H. Hölzel ed., 265 pp~, 1984, Graz. Electrophoretic Studies in the Genus Chrysopa (s. 1.), Evolutionary and Phylogenetic Inferences By L. BULLINI (Rome), M. M. PRINCIPI (Bologna) and R. CIANCIO (Rome) The taxonomy at the genus level of the subfamily Chrysopinae, and particularly of the old genus Chrysopa LEACH, represents till now an open problem. Different attempts of classification were made by several authors. TJEDER (1966,1972) splitted the genus Chrysopa (s. 1.) in various genera and subdivided the genus Chrysopa (s. str.) in a number of subgenera, on the basis of differences in male genital urites and external genital organs. This subdivision appears supported by studies on abdomen morphology of imagoes and on larval morphology, ethology and development, carried out by PRINCIPI (1977). HÖLZEL (1970) considered in the genus Chrysopa (s. str.) only the species with distinct 8° and 9° urosternites, including in other genera the species presenting them fused. The genus Anisochrysa sensu HÖLZEL (1970) comprehended two remarkably differentiated groups of species: the subgenera Chrysoperla and Anisochrysa, differing for genitalia and lar- val morphology, development and ethology, as pointed out by PRINCIPI (1956, 1977) and SÉMÉRIA (1977). The latter author proposed on such bases to consider Chrysoperla as a distinct genus. Finally, Chrysopa (s. str.), Chrysoperla and Anisochrysa were considered as distinct genera by ASPÖCK et al. (1980) in their recent revision on European Neuroptera. The problem of the phylogenetic relationships among the species of the genus Chrysopa (sensu latu) was approached by us with multilocus electrophoretic techniques. Their use in taxonomy and the evidence they provide for phylogenetic interpretation were pointed out in a number of recent papers (see for instance AVISE, 1975; BULLINI and SBORDONI, 1980). -
Pollen Resources Used by Chrysoperla Agilis (Neuroptera: Chrysopidae) in the Azores, Portugal
NOTE Eur. J. Entomol. 111(1): 143–146, 2014 doi: 10.14411/eje.2014.015 ISSN 1210-5759 (print), 1802-8829 (online) Pollen resources used by Chrysoperla agilis (Neuroptera: Chrysopidae) in the Azores, Portugal LEILA NUNES MORGADO, ROBERTO RESENDES, MÓNICA MOURA and MARIA A. MATEUS VENTURA CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo Açores, Departamento de Biologia, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, 9501-801, Ponta Delgada, Açores, Portugal, e-mails: [email protected]; [email protected]; [email protected]; [email protected] Key words. Neuroptera, Chrysopidae, Chrysoperla agilis, beneficial insect, Azores Archipelago, foraging behavior, palynology, trophic resources Abstract. There are approximately 1200 described species of Chrysopidae, many of which are predators of agricultural pests. Spe- cies of Chrysoperla are mass-produced and sold for use as biological control agents of agricultural pests in Europe, Asia, North and South America. Chrysoperla agilis, a member of the “carnea group” of Chrysoperla, has the potential to be biocontrol agent and is native to the Azores, and therefore a local candidate for use in IPM of pests, such as aphids and scale insects. Given that many adult Chrysopidae feed on pollen and honeydew and the biology of Ch. agilis is not well understood, we studied the preferences of Ch. agilis adults living in a greenhouse on the campus of the University of the Azores for feeding on different types of pollen. Twenty-six species of flowering plants, belonging to 16 families and 24 genera, all previously recorded on São Miguel Island, were found in the greenhouse. -
Nothochrysinae (Neuroptera: Chrysopidae): New Larval Description and Generic Synonymy, with a Consideration of Generic Relationships
Hindawi Publishing Corporation Psyche Volume 2014, Article ID 839261, 10 pages http://dx.doi.org/10.1155/2014/839261 Research Article Nothochrysinae (Neuroptera: Chrysopidae): New Larval Description and Generic Synonymy, with a Consideration of Generic Relationships Catherine A. Tauber1,2 1 Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-2601, USA 2 Department of Entomology and Nematology, University of California, Davis, CA 95616, USA Correspondence should be addressed to Catherine A. Tauber; [email protected] Received 13 February 2014; Revised 5 April 2014; Accepted 6 April 2014; Published 11 June 2014 Academic Editor: Jacques Hubert Charles Delabie Copyright © 2014 Catherine A. Tauber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Semaphorant B of Kimochrysa africana (Kimmins) expresses all of the larval synapomorphies that characterize the subfamily Nothochrysinae. Except for its head markings, the larva appears identical to that of Hypochrysa elegans (Burmeister). Based on consideration of both larval and adult similarities, Kimochrysa (Tjeder) is designated to be a subjective synonym of Hypochrysa Hagen (New Synonymy). The morphological basis for a previously proposed generic subdivision of Nothochrysinae is evaluated; the results indicate that the subfamily can be organized into two generic groupings each with distinct suites of shared adult characters. As yet, apomorphic support is not forthcoming from adult characters, and, unfortunately, larvae are known from only a few genera in the subfamily. 1. Introduction Brauer [11] provided the first description of a larva from the Nothochrysinae; his article illustrated and described the Chrysopid taxonomists generally agree that the subfamily monotypic European Hypochrysa Hagen (Semaphorant B— Nothochrysinae is an archaic, probably monophyletic group- second or third instar, as Hypochrysa nobilis Heyd.). -
Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features
Bull. Natl. Mus. Nat. Sci., Ser. A, 44(2), pp. 69–85, May 22, 2018 Kuwayamachrysa, a New Genus of Lacewings (Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features Shigehiko Tsukaguchi1 and Toshihiro Tago2 1 10–10–203 Kanbara, Nishinomiya, Hyogo 662–0021, Japan E-mail: [email protected] 2 1–29–13–101 Motogou, Kawaguchi, Saitama 332–0011, Japan E-mail: [email protected] (Received 22 March 2018; accepted 28 March 2018) Abstract The authors describe Kuwayamachrysa gen. nov. from northeastern Asia–Japan, Korea and Russian Far East. This new genus is characterized by a number of extraordinary features in the male and female genitalia, and also in the pattern of larval setation. In the male genitalia, there is a uniquely asymmetrical and intersecting gonapsis; in the female genitalia, a bursa-vela connector, vaginal frame and laminate link are present; and in the first instar, secondary setae occur on both thoracic and abdominal segments. The type species of the monotypic genus is Chrysopa kichijoi Kuwayama, 1936. It is redescribed with emphasis on the adult abdominal hypodermal coloration, female terminalia, and larval morphology (first and third instars), all of which were previously unknown. Several features of the new genus are compared with those of other genera: (i) the mor- phology of the gonapsis in relation to the dorsal membrane of the 9th sternite (ii) the morphology of newly described features (bursa-vela connector, vaginal frame and laminate link), and (iii) the first and third instar patterns of setation. Key words: Chrysopini, genitalia, Japan, kichijoi, Korea, Kuwayamachrysa, larval setation, new combination, new genus, Russian Far East. -
Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. -
Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.