Neuroptera: Chrysopidae)

Total Page:16

File Type:pdf, Size:1020Kb

Neuroptera: Chrysopidae) A Review of the Mesochrysinae and Nothochrysinae (Neuroptera: Chrysopidae) PHlbLIP A. ADAMS HARVARD UNIVERSITY VOLUME 135, NUMBER 4 CAMBRIDGE, MASSACHUSETTS, L1l.S.A. FEBRUARY 24, 1967 PUBLlCATlONS ISSUED OR DiSTRlBUTED BY THE MUSEUM OF COMPARATIVE ZOOLOGY HARVARD UNIVERSITY BULLETIN1863- BREVIORA1952- MEMOIRS18641938 JOHNSONIA,Department of Mollusks, 1941- OCCASIONALPAPERS ON MOLLUSKS,1945- Other Publications. Bigelow, H. B. and W. C. Schroeder, 1953. Fishes of the Gulf of Maine. Reprint, $6.50 cloth. Brues, C. T., A. L. Melander, and F. M. Carpenter, 1954. Classification of In- sects. $9.00 cloth. Creighton, W. S., 1950. The Ants of North America. Reprint, $10.00 cloth. Lyman, C. P. and A. R. Dawe (eds.), 1960. Symposium on Natural Mam- malian Hibernation. $3.00 paper, $4.50 cloth. Peters' Check-list of Birds of the World, vols. 2-7, 9, 10, 15. (Price list on request. ) Turner, R. D., 1966. A Survey and Illustrated Catalogue of the Teredinidae ( Molluscs: Bivalvia) . $8.00 cloth. Whittington, H. B. and W. D. I. Rolfe (eds.), 1963. Phylogeny and Evolution of Crustacea. $6.75 cloth. Proceedings of the New England Zoological Club 1899-1948. (Complete sets only. ) Publications of the Boston Society of Natural History. Publications Office Museum of Comparative Zoology Harvord University Cambridge, Massachusetts 021 38, U. S. A. @ The President and Fellows of Horvard College 1967. A REVIEW OF THE MESOCHRYSINAE AND NOTHOCHRYSINAE (NEUROPTERA: CHRYSOPIDAE) ABSTRACT tirely new, necessitating a preliminary re- classification of the family." In this preliminary subfamilial classifica- There appears no justification for rctain- tion of the Chrysopidae, Mesochrysopidae ing in a separate family the Mesozoic forms, is reduced to subfamilial rank. Keys to sub- which are placed in the family Meso- families and to genera of Nothochrysinae chrysopidae. These already have achieved are presented. The Nothochrysinac, as the alignment of the inner gradatc veins newly constituted, is characterized by re- which precedes the pseudomedia of the tention of jugum and frenulum, lack of alar later forms. In addition, they show the fun- tympana1 organ, archaic pseudomedia (ex- damental chrysopid characteristics: many cept in Nothochrysa and Dyspetochrysa) straight, unforked branches of Ks, which and little sclerotized prosternum. It includes diverge from 13 at a wide angle; two reg- Paleochrysa, Archaeochrysa, Dyspetochrysa, ular gradate scries; MP1 and MP2 few- Tribochrysa, Dictyochrysa, Triplochrysa, branched, intersecting the wing margin IIypochrysa, Kimochr!jsa, Pamochrysa, Pi- ncar the base, so that most of the discal machrysa, and Nothochrysa. The living area is occupied by the K-Ks-MA system. species of Nothochrysinac are cataloged, These basic features of proportion, while difficult to define, readily separate the and the North American species described Chrysopidae from all other families. and illustrated. The Apochrysinae, a distinctive and ho- New fossil taxa are: Archaeochrysa, new mogeneous group, has recently been revised genus for Paleochrysa creedi Carpenter, by Kimmins ( 1952113 ) . The Chrysopinae fracta (Cockerell) and paranervis n. sp. constitutes a receptacle for the remaining (Florissant, Colo. ) ; Dyspetochrysa, n. &en. vast and various assemblage of forms, for Tribochrysa vetuscula Scudder. New doubtless requiring subdivision when bet- Recent species arc: Pi~nachrysaalbicostales, ter understood. Baja Calif., and Arizona; fusca, intermedia All described genera of Mesochrysinae and nigra, southern Calif. and Nothochrysinae are included in the keys, and all species have been cataloged. INTRODUCTION Descriptions and illustrations have been This study comprises the first section of included for all living North American a taxonomic revision of the North American chrysopidae. ~h~ concept of the subfamily ' Although this paper was submitted for publica- tion prior to the appearance of Tjeder's paper, Nothochrysinae as herein is en- 1966, it has been possible to include his new taxa. IIe deli~nitsthe Nothochrysinae (=Dictyochrysinae) ' California State College, Fullerton. similarly. Hull. Mus. Comp. Zool., 135(4): 215-238, February, 1967 215 216 Bt~lle~inMuseum of Comparative Zoology, Vol. 135, No. 4 spccies, and ior such fossil or Old World ences, and the University of California, species as are of particular intcrest. I have Santa Barbara. not examined material of Dictl\ochrysa or Triplochr~~sa,which were reviewed by DlSCUSSlON OF CHARACTERS Kimmins ( 1952a). The wing-coupling apparatus consists of It is interesting that thc southwestern a large jugal lobe on the fore wing, and United States should have such a rich rep- a frenulum, bearing several long setae, on resentation (two genera, six species) of the hind wing; this is essentially the same this archaic: group, which has changed but apl'aratus as in FIemerobiidac, etc. The littlc since the Miocene (Adams, 1957). Chrysopinae may have a wealc frenulum, This concentration of thesc relics is rivaled 1)ut the jugal vein is thin, and therc is no by South Africa, with two genera and four jugal lobe. Loss of the wing-coupling ap- species, and Australia and Tasmania, also paratus appears associated with narrowing with two gcnera and four species. Such a and strengthening of the wing base, and distribution contributcs to the mounting is probably OF great adaptive significancc. cvidence that thc southwestern United A similiar modification has occurred in States has served as an evolutionary rc- the evolution of the Myrmeleontidae and fugium for the Neuroptera. Ascalaphidae from an osmyloid ancestor (Adams, 1958), and in the.Mantispidae. ACKNOWLEDGMENTS In the Nothochrysinae, there is no obvi- Grateful acknowledgment is made of the ous tympanal organ (Friedrich, 1953; Er- help and encouragement of F. M. Carpenter hardt, 1916) in the base of 11 in the fore and P. J. Darlington, Jr., of thc Museum wing, and the stem of M is easily visible of Comparative Zoology ( MCZ ) , Harvard. extcnding in a straight line adjacent to 8. Ellis MacLeod, of the Biological Labora- In the Chrysopinac, the tympanal organ tories, I-larvard, has made many valuablc forms a conspicuous bulgc in R, at the criticisms, and has given generously of his point where Cu diverges; the base of M time during the preparation of the manu- usually is co~ilescedwith R, but if visible, script. D. E. Kimmins has kindly examined makes a dctour posteriorly around the tym- type material and has made useful sugges- panal organ. Probably this is an auditory tions. Material has also bccn made avail- organ ( Adams, 1962). able through the courtesy oi C. D. MacNcil, In Nobilinus (Apochrysinae), the tym- California Academy of Scienccs (CAS), J. panal organ involves a large area betwecn D. Powell, University oi California, Berke- K and M, but is longcr and does not form Icy, California Insect Survey (CIS), J. N. a bulgc on the underside of 11, as in Helkin, University of California, Los Angelcs Chrysopinae. (UCLA), P. 11. Timberlake, University of Another character, probably of great California, Kivcrside ( UCII ) , L. Stange, adaptive significance, is the pseudomedia, University of Califorilia, Davis ( UCU ) , J. which diffcrs fundamentally ill the more Lattin, Oregon State College (OSC), E. I. primitive chrysopids, and in the Chryso- Sleeper, Long Reach State College, J. E. H. pinae-Apochrysinae. In Pimachrysa (Figs. Martin, Entomology Research Branch, Cnn- 1, 2), Hypochrysa (Fig. S), and in most ada Eepartment ot Agriculture, Ottawa of the fossil genera, Psm is composed of (CNC), Hugo Rodeck, University of Colo- crossveins alternating with the branches rado Museum, and Floyd Werner, Univer- of Rs $- MA, and is merely a basad exten- sity of Arizona. sion of the inner gradate serics. The coursc Financial assistance has been provided of the longitudinal veins and compositio~i through grants-in-aid from Sigma Xi-KESA, of the primitive pseudomedia is particularly the American Academy of Art5 and Sci- clear in Mypochrysa. In the Chrysopinae (Fig. 45),and Apochrysiilac (Fig. 44),ancl of MP1 with Rs -1- MA. This evolutioilary in Nothochrysa (Fig. 3), Psm, at least sequence can be seen by coinparing I"&' 1 rures basally, is composed of overlapping zig- 41, 5, 4, and 2. zagged branches of Rs and M, with no In Chrysopinae and Apochrysinae, the crossveins between them. ( Some specimens wing flexes along a line immediately an- of A7. fulviccps show no overlap.) In a few terior to Psm (dotted line, Figs. 44, 45). genera of Chrysopinae, such as Yumachrysn To facilitate this flexion in the fore wing, and Chrysopiella, there is n tramition trom the first sectorial crossvein (first crossvein the primitive arrangement apically, with distal to thc base of Rs + MA) and the no o~~erlap,to the more advanccd arrange- branches of Rs + MA are interrupted or ment basally, with overlapping veins. articulatect at the point of intersection with Primitively, the longitudinal veins forked the pseudomedia. In the Nothochrysinae, at the posterior wing margin, except for the sectorial crossvein is always interrupted, the aids in both wings, ant1 CUP in the but the branches of Rs + MA never are so hind wing. This condition may be seen in ( except in Nothochrysa ) . Flexion along the the hind wing of Archaeocl;zry.sa (Figs. 40, pxudomcdia is accomplished, in Hypo- 41). There is a tendency for the point of chrysu, by folds traversing the crossveins furcation to move proximally until it reaches of Psm (Fig. 5). In Pimachrysa, there the outer gradate crossveins; when this appears to be no distinct line of flexion, ex- occurs, the pscudomcdial cells appear each cept perhaps in P. nigra (Fig. 4). In this to give rise to two marginal veinlets. This spccies the veins show no obvious wcaken- process bcgins at the wing base, and pro- ing or articulation, but most specimens ceeds apically; the sequence is best secn have a slight wrinkle in the membrane in the fore wing of Archaeochrysa para- par:tllel and anterior to Psm. A similar line newis (Fig. 40). Frequently the longi- of flexion occurs between MA and MP in tudinal veins fail to fork at all.
Recommended publications
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • The Chrysopidae of Canada (Neuroptera): Recent Acquisitions Chiefly in British Columbia and Yukon
    .I. ENTOMOL. soc. BRIT. COLUMBIA 97. DECEMBER 2000 39 The Chrysopidae of Canada (Neuroptera): recent acquisitions chiefly in British Columbia and Yukon J. A. GARLAND 1011 CARLING AVENUE, OTTAWA, ONTARIO, CANADA KI Y 4E7 ABSTRACT Chryso pidae collected sin ce 1980 chiefly in British Co lumbi a and Yuk on, Canada, and some late additi ons co ll ected before \980, are reported. :Vinela gravida (Banks) is reported for th e first time in th e last 90 years. This is th e first supplement to th e inventory of Chryso pid ae in Can ada. Key words: Ne uroptera, Chryso pidae, Canada INTRODUCTION The chrysopid faun a of Canada, as presentl y und erstood (Garland 1984, 1985), has been full y in ve ntori ed up to 1980 (Garl and 1982). Since then , newl y co ll ected specimens in British Columbia and th e Yukon, and some older-dated specimens not previously seen, have become availabl e. The purpose of publishing th ese spec imen label data is to suppl ement th e already extensive in ve ntory oflabel data on th e Ca nadi an chrysopid fauna, thereby ex tending it to the year 2000. Materi als an d meth ods appropri ate to thi s study have been doc um ented elsewhere (Garl and 2000). All specimens reported here are depos it ed in the Spence r Entomologica l Museum, Department of Zoo logy, University of Briti sh Co lumbi a. Ac ronyms used below: BC , British Co lumbia; SK, Sas katch ewan; and YK , Yukon Territory.
    [Show full text]
  • The First Green Lacewings from the Late Eocene Baltic Amber
    The first green lacewings from the late Eocene Baltic amber VLADIMIR N. MAKARKIN, SONJA WEDMANN, and THOMAS WEITERSCHAN Makarkin, V.N., Wedmann, S., and Weiterschan, T. 2018. The first green lacewings from the late Eocene Baltic amber. Acta Palaeontologica Polonica 63 (3): 527–537. Pseudosencera baltica gen. et sp. nov. of Chrysopinae (Chrysopidae, Neuroptera) is described from Baltic amber. Additionally, another species, Nothochrysa? sp. (Nothochrysinae), is left in the open nomenclature. Pseudosencera bal- tica gen. et sp. nov. represents the oldest confident record of Chrysopinae. The new genus lacks the apparent forewing intramedian cell, and possesses three character states not found in other Chrysopinae: the simple AA1, the short basal crossvein between M and Cu, and 5‒6 rings of setae on the antennal flagellomeres. This genus is probably a special- ised form in a basal branch of Chrysopinae, that could not be attributed to any of the known tribes. The specimen of Nothochrysa? sp. consists only of fragments of the forewings. The late Eocene Baltic amber represents the oldest horizon where Chrysopinae and Nothochrysinae are found to coexist. It is highly likely that Chrysopidae were extremely rare in these forests. Key words: Neuroptera, Chrysopinae, Nothochrysinae, Cenozoic, Baltic amber. Vladimir N. Makarkin [[email protected]], Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. Sonja Wedmann [[email protected]], Senckenberg Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany. Thomas Weiterschan [[email protected]], Forsteler Strasse 1, 64739 Höchst Odw., Germany. Received 16 May 2018, accepted 5 July 2018, available online 23 July 2018.
    [Show full text]
  • Neuroptera: Chrysopidae)
    Zootaxa 3351: 1–14 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new genus of Neotropical Chrysopini (Neuroptera: Chrysopidae) FRANCISCO SOSA1 & SERGIO DE FREITAS2 1 Universidad Centroccidental “Lisandro Alvarado”, Museo Entomológico “Dr. José Manuel Osorio” (UCOB), Barquisimeto, Lara, . E-mail: [email protected] 2 Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil (deceased) Abstract Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navás, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navás 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2–8 usually with microtholi, male geni- talia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identi- fied; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species
    [Show full text]
  • A Checklist of the Neuropterid Insects of British Columbia (Insecta: M Egaloptera, Neuroptera and Raphidioptera) with a Summary of Their Geographic Distribution
    J. ENTOMOL. SOC. BRIT. COLUMBIA 106, DECEMBER 2009 17 A checklist of the Neuropterid insects of British Columbia (Insecta: M egaloptera, Neuroptera and Raphidioptera) with a summary of their geographic distribution GEOFFREY G.E. SCUDDER1 and ROBERT A. CANNINGS2 ABSTRACT The Neuropterid orders in British Columbia consist of the Megaloptera, Neuroptera and Raphidioptera. Twelve families containing 89 species are represented. The distribution of these species is documented with reference to the 9 terrestrial ecoprovinces in British Columbia. Collection localities are given for species represented by 5 or fewer sites. Four species, 2 of Coniopterygidae and 2 of Hemerobiidae, are considered alien intro- ductions. INTRODUCTION The first list of British Columbia (BC) order, the Neuroptera. Most of the more neuropterid insects was published by recent research on these 3 taxa in BC, Spencer (1942) at a time when the 3 orders which include both aquatic and terrestrial in this group of insects that occur in the species, was summarized by Cannings and province (Megaloptera, Neuroptera and Scudder (2001) and Scudder et al. (2001). Raphidioptera) were considered as a single M ATERIALS AND M ETHODS The list of species here considered as recorded. An ecoprovince is an area with occurring in BC follows the classification consistent climatic or oceanographic, to- of Oswald and Penny (1991) and Penny et pographic and geological history al. (1997), with some nomenclature (Meidinger and Pojar 1991, Demarchi changes published since. In the recent lit- 1996). There are 10 ecoprovinces in BC; erature, Garland and Kevan (2007) have their size and broad internal uniformity discussed the Chrysopidae, and Cannings make them ideal units for the general dis- and Cannings (2006) the Mantispidae.
    [Show full text]
  • Of the World
    OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES No. 147, 94 pages. December 2, 1991 GENUS-GROUP NAMES OF THE NEUROPTERA, MEGALOPTERA AND RAPHIDIOPTERA OF THE WORLD By John D. Oswald Department of Entomology, Cornell University, Ithaca, New York 14853-0999 and Norman D. Penny Department of Entomology, California Academy of Sciences, San Francisco, California 94118-4599 Abstract: Alphabetical listings of the genus-group names of extant Megaluptcra, Raphidioptera, and = Neuroptera (s. str. Planipennia) are presented. Taxonomic and nomenclatural data for each name are given. Summaries of new genus-group synonyms, unreplaced junior homonyms, names without valid type species fixations, and names based on misidentified type species are given. Complete bibliographic references are given for all names and nomenclatural acts. Contents Introduction Inlroduciion (1) The last worldwide species-level catalog of Scope (2) the order str. = Nomenclature (2) Neuroptera (s. Planipennia), and Format Arrangement of Entries (2) Hermann Hagen's 1866 Hemerobidarum Syn- General Arrangement (2) opsis Synonymica, has long been obsolete, as Subgenera (2) are the most recent revisions Synonymy (2) comprehensive Character Formals (3) of the orders Megaloptera (i.e.. Van dcr Publication Dates (3) Weele 1910) and Raphidioptera (i.e., Navas Type Species (3) [1919e] 1918). In the 120+ years since 1866, Unavailable Names (3) the number of available Homonymy (4) nomenclaturally Family-Group Taxa (4) genus-group names in the order Neuroptera Selected Taxonomic References
    [Show full text]
  • Electrophoretic Studies in the Genus Chrysopa (S
    Progress in World's Neuropterology. Gepp J-, H. Aspöck & H. Hölzel ed., 265 pp~, 1984, Graz. Electrophoretic Studies in the Genus Chrysopa (s. 1.), Evolutionary and Phylogenetic Inferences By L. BULLINI (Rome), M. M. PRINCIPI (Bologna) and R. CIANCIO (Rome) The taxonomy at the genus level of the subfamily Chrysopinae, and particularly of the old genus Chrysopa LEACH, represents till now an open problem. Different attempts of classification were made by several authors. TJEDER (1966,1972) splitted the genus Chrysopa (s. 1.) in various genera and subdivided the genus Chrysopa (s. str.) in a number of subgenera, on the basis of differences in male genital urites and external genital organs. This subdivision appears supported by studies on abdomen morphology of imagoes and on larval morphology, ethology and development, carried out by PRINCIPI (1977). HÖLZEL (1970) considered in the genus Chrysopa (s. str.) only the species with distinct 8° and 9° urosternites, including in other genera the species presenting them fused. The genus Anisochrysa sensu HÖLZEL (1970) comprehended two remarkably differentiated groups of species: the subgenera Chrysoperla and Anisochrysa, differing for genitalia and lar- val morphology, development and ethology, as pointed out by PRINCIPI (1956, 1977) and SÉMÉRIA (1977). The latter author proposed on such bases to consider Chrysoperla as a distinct genus. Finally, Chrysopa (s. str.), Chrysoperla and Anisochrysa were considered as distinct genera by ASPÖCK et al. (1980) in their recent revision on European Neuroptera. The problem of the phylogenetic relationships among the species of the genus Chrysopa (sensu latu) was approached by us with multilocus electrophoretic techniques. Their use in taxonomy and the evidence they provide for phylogenetic interpretation were pointed out in a number of recent papers (see for instance AVISE, 1975; BULLINI and SBORDONI, 1980).
    [Show full text]
  • Pollen Resources Used by Chrysoperla Agilis (Neuroptera: Chrysopidae) in the Azores, Portugal
    NOTE Eur. J. Entomol. 111(1): 143–146, 2014 doi: 10.14411/eje.2014.015 ISSN 1210-5759 (print), 1802-8829 (online) Pollen resources used by Chrysoperla agilis (Neuroptera: Chrysopidae) in the Azores, Portugal LEILA NUNES MORGADO, ROBERTO RESENDES, MÓNICA MOURA and MARIA A. MATEUS VENTURA CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo Açores, Departamento de Biologia, Universidade dos Açores, Rua da Mãe de Deus, Apartado 1422, 9501-801, Ponta Delgada, Açores, Portugal, e-mails: [email protected]; [email protected]; [email protected]; [email protected] Key words. Neuroptera, Chrysopidae, Chrysoperla agilis, beneficial insect, Azores Archipelago, foraging behavior, palynology, trophic resources Abstract. There are approximately 1200 described species of Chrysopidae, many of which are predators of agricultural pests. Spe- cies of Chrysoperla are mass-produced and sold for use as biological control agents of agricultural pests in Europe, Asia, North and South America. Chrysoperla agilis, a member of the “carnea group” of Chrysoperla, has the potential to be biocontrol agent and is native to the Azores, and therefore a local candidate for use in IPM of pests, such as aphids and scale insects. Given that many adult Chrysopidae feed on pollen and honeydew and the biology of Ch. agilis is not well understood, we studied the preferences of Ch. agilis adults living in a greenhouse on the campus of the University of the Azores for feeding on different types of pollen. Twenty-six species of flowering plants, belonging to 16 families and 24 genera, all previously recorded on São Miguel Island, were found in the greenhouse.
    [Show full text]
  • Nothochrysinae (Neuroptera: Chrysopidae): New Larval Description and Generic Synonymy, with a Consideration of Generic Relationships
    Hindawi Publishing Corporation Psyche Volume 2014, Article ID 839261, 10 pages http://dx.doi.org/10.1155/2014/839261 Research Article Nothochrysinae (Neuroptera: Chrysopidae): New Larval Description and Generic Synonymy, with a Consideration of Generic Relationships Catherine A. Tauber1,2 1 Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-2601, USA 2 Department of Entomology and Nematology, University of California, Davis, CA 95616, USA Correspondence should be addressed to Catherine A. Tauber; [email protected] Received 13 February 2014; Revised 5 April 2014; Accepted 6 April 2014; Published 11 June 2014 Academic Editor: Jacques Hubert Charles Delabie Copyright © 2014 Catherine A. Tauber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Semaphorant B of Kimochrysa africana (Kimmins) expresses all of the larval synapomorphies that characterize the subfamily Nothochrysinae. Except for its head markings, the larva appears identical to that of Hypochrysa elegans (Burmeister). Based on consideration of both larval and adult similarities, Kimochrysa (Tjeder) is designated to be a subjective synonym of Hypochrysa Hagen (New Synonymy). The morphological basis for a previously proposed generic subdivision of Nothochrysinae is evaluated; the results indicate that the subfamily can be organized into two generic groupings each with distinct suites of shared adult characters. As yet, apomorphic support is not forthcoming from adult characters, and, unfortunately, larvae are known from only a few genera in the subfamily. 1. Introduction Brauer [11] provided the first description of a larva from the Nothochrysinae; his article illustrated and described the Chrysopid taxonomists generally agree that the subfamily monotypic European Hypochrysa Hagen (Semaphorant B— Nothochrysinae is an archaic, probably monophyletic group- second or third instar, as Hypochrysa nobilis Heyd.).
    [Show full text]
  • Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features
    Bull. Natl. Mus. Nat. Sci., Ser. A, 44(2), pp. 69–85, May 22, 2018 Kuwayamachrysa, a New Genus of Lacewings (Insecta, Neuroptera, Chrysopidae, Chrysopinae, Chrysopini) with Markedly Divergent Adult and Larval Features Shigehiko Tsukaguchi1 and Toshihiro Tago2 1 10–10–203 Kanbara, Nishinomiya, Hyogo 662–0021, Japan E-mail: [email protected] 2 1–29–13–101 Motogou, Kawaguchi, Saitama 332–0011, Japan E-mail: [email protected] (Received 22 March 2018; accepted 28 March 2018) Abstract The authors describe Kuwayamachrysa gen. nov. from northeastern Asia–Japan, Korea and Russian Far East. This new genus is characterized by a number of extraordinary features in the male and female genitalia, and also in the pattern of larval setation. In the male genitalia, there is a uniquely asymmetrical and intersecting gonapsis; in the female genitalia, a bursa-vela connector, vaginal frame and laminate link are present; and in the first instar, secondary setae occur on both thoracic and abdominal segments. The type species of the monotypic genus is Chrysopa kichijoi Kuwayama, 1936. It is redescribed with emphasis on the adult abdominal hypodermal coloration, female terminalia, and larval morphology (first and third instars), all of which were previously unknown. Several features of the new genus are compared with those of other genera: (i) the mor- phology of the gonapsis in relation to the dorsal membrane of the 9th sternite (ii) the morphology of newly described features (bursa-vela connector, vaginal frame and laminate link), and (iii) the first and third instar patterns of setation. Key words: Chrysopini, genitalia, Japan, kichijoi, Korea, Kuwayamachrysa, larval setation, new combination, new genus, Russian Far East.
    [Show full text]
  • Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
    Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education.
    [Show full text]
  • Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
    Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2.
    [Show full text]