Express Method for Isolation of Ready-To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses. -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
Individualistic Patterns in the Budding Morphology of the Mediterranean Demosponge Aplysina Aerophoba
Short Communication Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.19332 Individualistic patterns in the budding morphology of the Mediterranean demosponge Aplysina aerophoba Julio A. DÍAZ1, 2, Juancho MOVILLA3 and Pere FERRIOL1 1 Interdisciplinary Ecology Group, Biology Department, Universidad de las Islas Baleares, Palma, Spain 2 Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, Palma de Mallorca, Spain 3 Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, Estació d’Investigació Jaume Ferrer, Menorca, Spain Corresponding author: [email protected] Handling Editor: Eleni VOULTSIADOU Received: 10 December 2018; Accepted: 18 April 2019; Published on line: 28 May 2019 Abstract The external morphology of sponges is characterized by high plasticity, generally considered to be shaped by environmental factors, and modulated through complex morphogenetic pathways. This work shows for the first time that explants of the At- lanto-Mediterranean demosponge Aplysina aerophoba reared in aquaria under different pH and temperature conditions produce reproductive buds with a phenotype determined by the donor individual. These results suggest, therefore, that genotype may be an important factor controlling different phenotypes in this species. Keywords: Mediterranean Sea; Aplysina aerophoba; Asexual reproduction; Morphogenesis; Sponge budding. Introduction 1986). This was tested on field experiments involving tropical sponges, in which the relationship between the Sponges are invertebrates with a relatively simple phenotype and genetic identity of individuals was ver- body design, formed by an external layer, the pinaco- ified with graft histocompatibility bioassays (Hildeman derm; an inner layer, the mesohyl; and an aquiferous sys- et al., 1979; Jokiel et al., 1982; Neigel & Avisse, 1983; tem composed of canals and choanocyte chambers. -
A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds. -
Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella Labyrinthus (Demospongiae: Verongiida)
International Journal of Molecular Sciences Article Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida) Mario Schubert 1, Björn Binnewerg 1, Alona Voronkina 2 , Lyubov Muzychka 3, Marcin Wysokowski 4,5 , Iaroslav Petrenko 5, Valentine Kovalchuk 6, Mikhail Tsurkan 7 , Rajko Martinovic 8 , Nicole Bechmann 9 , Viatcheslav N. Ivanenko 10 , Andriy Fursov 5, Oleg B. Smolii 3, Jane Fromont 11 , Yvonne Joseph 5 , Stefan R. Bornstein 12,13, Marco Giovine 14, Dirk Erpenbeck 15 , Kaomei Guan 1,* and Hermann Ehrlich 5,* 1 Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany; [email protected] (M.S.); [email protected] (B.B.) 2 Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine; [email protected] 3 V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine; [email protected] (L.M.); [email protected] (O.B.S.) 4 Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; [email protected] 5 Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; [email protected] (I.P.); [email protected] (A.F.); [email protected] (Y.J.) 6 Department of Microbiology, -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
University of Groningen Cultivation of Bacteria from Aplysina Aerophoba
University of Groningen Cultivation of Bacteria From Aplysina aerophoba: Effects of Oxygen and Nutrient Gradients Gutleben, J.; Loureiro, C.; Ramírez Romero, L.A.; Shetty, S.; Wijffels, R.H.; Smidt, H.; Sipkema, D. Published in: Frontiers in Microbiology DOI: 10.3389/fmicb.2020.00175 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Gutleben, J., Loureiro, C., Ramírez Romero, L. A., Shetty, S., Wijffels, R. H., Smidt, H., & Sipkema, D. (2020). Cultivation of Bacteria From Aplysina aerophoba: Effects of Oxygen and Nutrient Gradients. Frontiers in Microbiology, 11, [175]. https://doi.org/10.3389/fmicb.2020.00175 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Estructura De La Comunidad De Poriferos En El Arrecife “Los Picos”
UNIVERSIDAD VERACRUZANA INSTITUTO DE CIENCIAS MARINAS Y PESQUERÍAS MAESTRÍA EN ECOLOGÍA Y PESQUERÍAS ESTRUCTURA DE LA COMUNIDAD DE PORIFEROS EN EL ARRECIFE “LOS PICOS” EN VERACRUZ, MÉXICO. PROYECTO DE TESIS QUE PRESENTA: BIOL. JANNETH ALEJANDRA MARTÍNEZ VARGAS COMO REQUISITO PARCIAL PARA OBTENER EL TITULO PROFESIONAL DE: MAESTRA EN ECOLOGÍA Y PESQUERÍAS Director/Tutor de tesis: Dr. Alejandro Granados Barba Asesores: Dr. David Salas Monreal Dr. Leonardo D. Ortiz Lozano BOCA DEL RÍO, VERACRUZ "Lo que sabemos es una gota de agua, lo que ignoramos es el océano" Isaac Newton AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el apoyo económico otorgado con la beca de maestría no. 448364, sin la cual nada de esto hubiese sido posible. Al Instituto de Ciencias Marinas y Pesquerías de la Universidad Veracruzana, a sus académicos y administrativos, por haberme recibido como parte de sus alumnos de maestría, por el apoyo, buenos momentos y todas las enseñanzas. Al Programa de Fortalecimiento de la Calidad Educativa (PFCE) por los apoyos otorgados para la realización del trabajo de campo y para la participación en un congreso nacional (IV Congreso sobre los Recursos Acuáticos del Golfo de México y Mar Caribe - 2017). Al Laboratorio de Investigación de Recursos Acuáticos (LIRA) del Instituto Tecnológico de Boca del Río y todo su personal por facilitarme el acceso para trabajar en sus instalaciones y el uso del equipo para realizar el procesamiento de muestras de granulometría. Al Dr. Alejandro Granados, mi director y asesor, por recibirme en su grupo de trabajo aún sin conocerme. Por su apoyo en el proceso tan cambiante de la tesis que nos recordó una vez más que con la naturaleza nada está escrito. -
Dry Tortugas National Park Monroe County, Florida
APPENDIX A: ERRATA 1. Page 63, Commercial Services, second paragraph. Replace the second sentence with the following text: “The number of vessels used in the operation, and arrival and departure patterns at Fort Jefferson, will be determined in the concession contracting process.” Explanation: The number of vessels to be used by the ferry concessionaire, and appropriate arrival and departure patterns, will be determined during the concessions contracting process that will occur during implementation of the Final GMPA/EIS. 2. Page 64, Commercial Services, third paragraph. Change the last word of the fourth sentence from “six” to “twelve.” Explanation: Group size for snorkeling and diving with commercial guides in the research natural area zone will be limited to 12 passengers, rather than 6 passengers. 3. Page 64, Commercial Services, sixth paragraph. Change the fourth sentence to read: “CUA permits will be issued to boat operators for 12-passenger multi-day diving trips.” Explanation: Group size for guided multi-day diving trips by operators with Commercial Use Authorizations will be 12 passengers, rather than 6 passengers. 4. Page 40, Table 1. Ranges of Visitor Use At Specific Locations. Change the last sentence in the box on page 40 to read: “Group size for snorkeling and diving with commercial guides in waters in the research natural area shall be a maximum of 12 passengers, excluding the guide.” Explanation: Clarifies that maximum group size for guided multi-day diving trips in the RNA by operators with Commercial Use Authorizations will be 12 passengers, rather than six passengers. 5. Page 84, Table 4: Summary of Alternative Actions. -
An Essential Component of Caribbean Coral Reefs M
BULLETIN OF MARINE SCIENCE, 69(2): 535–546, 2001 SPONGES: AN ESSENTIAL COMPONENT OF CARIBBEAN CORAL REEFS M. Cristina Diaz and Klaus Rützler ABSTRACT Sponges are an important structural and functional component of Caribbean coral reefs. We support this statement with our data on sponge diversity, abundance, productivity, and participation in nutrient cycling from Carrie Bow Cay on the Barrier Reef of Belize and from comparative studies in other Caribbean locations. Sponges have at least six biological and ecological properties that make them an influential part of Caribbean coral- reef ecosystems: high diversity, higher than all coral groups combined; high abundance (area coverage) and biomass (weight, volume) that may exceed values for all other reef epibenthos in some areas and reef zones; capacity to mediate non-animal processes such as primary production and nitrification through complex symbioses; chemical and physi- cal adaptation for successful space competition; capability to impact the carbonate frame- work through calcification, cementation, and bioerosion; and potential to alter the water column and its processes through high water filtering capabilities and exhalation of sec- ondary metabolites. We conclude that thorough and informed study of sponges is indis- pensable when characterizing, assessing, or monitoring a coral reef. The assessment and monitoring of Caribbean coral reefs have become of paramount importance in recent years owing to the increasing occurrence of maladies menacing this unique ecosystem (for instance, coral bleaching, disease, urban development, ship ground- ing, and oil spills). The recognition of the importance of sponges in these ecosystems is reflected in the inclusion of sponge abundance estimates, mostly in the form of area cov- erage, in major monitoring efforts of Caribbean coral reefs (Woodley et al., 1997). -
Checklist of Sponges (Porifera) of the South China Sea Region
Micronesica 35-36:100-120. 2003 Taxonomic inventory of the sponges (Porifera) of the Mariana Islands MICHELLE KELLY National Institute of Water & Atmospheric Research (NIWA) Ltd Private Bag 109-695 Newmarket, Auckland, New Zealand JOHN HOOPER Queensland Museum P.O. Box 3300 South Brisbane, Queensland 4101, Australia VALERIE PAUL1 AND GUSTAV PAULAY2 Marine Laboratory University of Guam Mangilao, Guam 96923 USA ROB VAN SOEST AND WALLIE DE WEERDT Institute for Biodiversity and Ecosystem Dynamics Zoologisch Museum University of Amsterdam P. O. Box 94766, 1090 GT Amsterdam, The Netherlands Abstract—We review the sponge fauna of the Mariana Islands based on new and existing collections, and literature records. 124 species of siliceous sponges (Class Demospongiae) and 4 species of calcareous sponges (Class Calcarea) have been identified to date, representing 73 genera, 44 families, within 16 orders. Several species are adventive. Approximately 30% (40) of the species encountered are undescribed, but not all are endemics, as the authors know them from other locations. Approximately 30% (38) of the species are known from diverse locations within the Indo West Pacific, but several well-known, widespread species are absent. The actual diversity of sponge fauna of the Marianas is considerably higher, as many species, especially cryptic and encrusting taxa, remain to be collected and studied. Introduction Our knowledge of the sponge fauna of the tropical Pacific has increased substantially in recent years, as a result of enhanced collecting effort driven in 1 current address: Smithsonian Marine Station at Fort Pierce, Fort Pierce FL 34949 2 corresponding author; current address: Florida Museum of Natural History, University of Florida, Gainesville FL 32611-7800, USA; email: [email protected] Kelly et al.: Sponges of the Marianas 101 part by pharmaceutical interests, and by the attention of a larger number of systematists working on Pacific sponges than ever before. -
Aplysina Insularis Thomas Fendert3, Victor Wrayb, Rob W
Bromoisoxazoline Alkaloids from the Caribbean Sponge Aplysina insularis Thomas Fendert3, Victor Wrayb, Rob W. M. van Soestc and Peter Proksch3 a Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg. Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany b Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany c Instituut voor Systematiek en Populatiebiologie, Zoologisch Museum. P. O. Box 94766, Universiteit van Amsterdam. 1090 GT Amsterdam, The Netherlands Z. Naturforsch. 54c, 246-252 (1999); received December 23, 1998/January 22, 1999 Sponges, Aplysina insularis, Bromoisoxazoline Alkaloids, Chemotaxonomy, Structure Elucidation An investigation of a specimen of the Caribbean sponge Aplysina insularis resulted in the isolation of fourteen bromoisoxazoline alkaloids (1-14), of which 14-oxo-aerophobin-2 (1)* is a novel derivative. Structure elucidation of the compounds have been established from spectral studies and data for 1 are reported. Constituents 2 to 6 and 11 to 14 have not been identified sofar in Aplysina insularis species. The presence of the known compounds 7 to 9 in Aplysina insularis indicates that their use for chemotaxonomical purposes is questionable. Introduction specimens all belonging to the Demospongiae Dienone (16) and dimethoxyketal (17) were the class. An initial identification of the sponges on first compounds to be isolated out of the large the cruise suggested one species of the Aplysinelli- group of bromotyrosine derivatives from two ma dae family namely Pseudoceratina crassa and rine sponges, Aplysina cauliformis and Aplysina seven different species of the Aplysinidae family fistularis, of the family Aplysinidae (Sharma and namely Aplysina insularis, Aplysina fulva, Aplys Burkholder, 1967; Minale et al., 1976) during a ina lacunosa, Aplysina cauliformis, Aplysina arch- search for new sponge constituents with antimicro eri, Verongula gigantea and Verongula rigida.