Marine Insects Photos Courtesy of Dr Lanna Cheng, —And the Strange Case of the Halobates University of California-San Diego and Sea Skater, Halobates

Total Page:16

File Type:pdf, Size:1020Kb

Marine Insects Photos Courtesy of Dr Lanna Cheng, —And the Strange Case of the Halobates University of California-San Diego and Sea Skater, Halobates science Walking on Water Text by Michael Symes Marine Insects Photos courtesy of Dr Lanna Cheng, —and the strange case of the Halobates University of California-San Diego and Sea skater, Halobates. Photo courtesy of Scripps Institution of Oceanography-La Jolla Scripps Institution of Oceanography, La Jolla When we think of the animals about 5 million species is probably the of the oceans our first thoughts most accurate. (Gaston, KJ. 1991. The magnitude of global insects species rich- are generally of whales, sharks, ness. Conservation Biology 5: 283-96). dolphins, tuna fish, and perhaps Thus, only about 20 % of the global insect octopusses. All these have been fauna is probably known and named. in the news lately, also in this Big numbers magazine, for reasons regarding Insects comprise more than 75 percent their behaviour or exploitation. of all described animal species. Some These are large animals, and 30,000 to 40,000 insect species, i.e. just 3 like the lesser food fishes such to 4 percent of all insects, are aquatic, or have aquatic larval stages, and live in all as salmon and herring, we have sorts of watery habitats. About 9,000 spe- many reasons for our interest in cies (mostly bugs and beetles) have all them. However, even the very stages under or on water. In about 30,000 species only the larval stage is aquatic small acquatic creatures such (flies, mosquitos). as krill and zooplankton are Insects are found throughout the world important because they are at except near the poles and, with but a the bottom of the food chains of single exception, pervade every habi- tat except the sea. Some are found at the larger fish which themselves depths of 1,300 meters in Lake Baikal, again are food for those at the some are to be found only in rain-filled top of the chains, we humans. tree holes, while others inhabit caves and Thus, all marine life in someway underground aquifiers. Map of A Marine Chironomid (midge) habi- A Marine Chironomid (midge) Freshwater habitats are the only aquat- tat. Pontomia are found only in lagoons or other is important to us. Photo by Dr Lanna Cheng, University of California-San Diego ic habitats where insects dominate. In or tide pools in the Indo-Pacific. Illustration saltwater and brackish habitats, crusta- courtesy of the University of Nebraska-Lincoln There is one important common factor in the oceans, that which lives by or on the University Press) there are approximately cea (the next most numerous arthropod) Department of Entomology the examples of marine life given above. ocean but not in it at all. Here I am think- 926,400 described species of extant dominate. Although only 3% of all insects They all have their prime existence in the ing about the marine insects. hexapods i.e. insects. Estimates of the are aquatic for some part of their life Impact water, i.e. at least partially below the According to an excellent, newly total number of insect species vary from cycle, insects make up more than 90% Despite their low numbers compared to surface. We rarely, if ever, consider the published book (Evolution of the Insects, about 2 million species to 30 million spe- of small creatures found in mountain the terrestrial insects, marine insects still other sort of animal life associated with D Grimaldi, M S Engel, Cambridge cies and more. However, an estimate of streams. have a tremendous impact on man. Flies 56 X-RAY MAG : 6 : 2005 EDITORIAL FEATURES TRAVEL NEWS EQUIPMENT BOOKS SCIENCE & ECOLOGY EDUCATION PROFILES PORTFOLIO CLASSIFIED science Marine Insects are the most numerous and is much more oxygen in air underwater. A skin of air economically important (20%), and water is much that is trapped by hairs on species of marine insects. heavier than air. the body or under the wing Water scorpion The disease-bearing mos- So, to extract oxygen from covers (Water Beetle). The quitoes, biting horse flies, water, an animal will have insect breathes the air in the deer flies, and midges have to process a lot of water bubble through the holes in impeded the human devel- to get the same amount its abdomen (spiracles) just opment of enormous areas of oxygen. That is prob- like other insects. of coastal land. And other ably one reason why adult marine flies can transmit dis- aquatic insects continue Making the best eases such as Leishmaniasis. to breathe air instead of of both worlds Unlike the dominating developing gills. Usually only Living on the margin of land-based insects, howev- aquatic insect larvae devel- water and air, many aquat- er, the marine insects have op gills to absorb oxygen ic insects have developed additional prob- ingenious ways lems to overcome to sense the Whirligig Beetle live in their fight for sur- world and to on the surface of the vival. For example, move around. water at the edges how do aquatic Most aquatic of lakes and streams. insects avoid insects are sen- They are 5-25 mm drowning? Most sitive to water long and are named insects that land on ripples to detect so, because they swim in circles water are trapped predators or by the water sur- prey. Some even face tension and create their own tiny ones can even ripples on the drown inside a water surface water droplet, una- and process the ble to break out of returning “ech- the bubble surface. oes” to detect Aquatic insects prey. Many also cope by having a Pond Skater create ripples to waterproofed skin find mates and so the water doesn’t get from the water. So, how do communicate with each into the body. Many are aquatic insects obtain their other (Whirligig Beetle, Pond covered with a water-repel- oxygen? Skater). lent waxy layer. They also Like mosquito larva and In a double-vision adap- usually have hairy or waxy water scorpion, they can tation the Whirligig Beetle legs which repel water so snorkel with a breathing has eyes divided horizon- they don’t get trapped by tube. The end of the tube tally to see both under and the water surface tension. usually has bristles to break above water. This is very the water surface tension useful when predators can The oxygen problem and keep the tube open. attack you from both below There is very little oxygen in This method, however, and above. water (as low as 0.4% and doesn’t allow the insect to Many paddle underwa- often zero). Water contains travel far from the water sur- ter with oar-like legs. These less oxygen the warmer it face. legs are long, flattened and A mosquite larva uses a snorkel-like breathing is. This is why there is often Others have a scuba fringed. The hairy fringes tube at the posterior end of its abdomen more life in a cool pond tank. These “divers” create spread out on the power shaded by trees and in an “air tank” for greater stroke increasing the surface temperate climates. There freedom of movement area, and bend in on the 57 X-RAY MAG : 6 : 2005 EDITORIAL FEATURES TRAVEL NEWS EQUIPMENT BOOKS SCIENCE & ECOLOGY EDUCATION PROFILES PORTFOLIO CLASSIFIED science Marine Insects face tension. In this way, the water sur- ocean. The secret is the tiny water-repel- face tension on the front pulls it forwards. lent hairs on their legs and feet that allow It shoots forwards on its front feet which them to “tiptoe” across the surface of are held out like skis, and steers itself by the water. These hairs also help to spread flexing its abdomen. This tiny bee- the insects’ weight over a larger tle is the size of a rice grain surface area, preventing but can travel nearly 1m them from sinking. a second this way. It The surface tension of doesn’t hunt on water, the air-sea interface but at the water’s allows them to stand edge, and saves or move on the Marine Skater Eggs on a floating Spirulla this trick to escape water at a speed as shell. Even though Halobates live their predators. fast as one meter A map of the world-wide distribution of entire lives on the ocean, they require per second. As long Just one genus the marine insect, Sea Skater, Halobates. floating objects upon which to place The Halobates as the surface ten- living on the oceans The known distribution is displayed in their eggs. These objects can include As we have seen sion is maintained, But why is there only just this one sin- white. There are five known species of floating seashells, sea bird feathers, above, marine sea skaters are able gle genus of insect living on the open Halobates distributed around the earth pieces of wood, plastic or lumps of tar. approximately between latitutdes 40- insects have devel- to move normally. If oceans? The five known species of The eggs, which are often crowded degrees south and north of the equator. on small objects due to the lack of oped succesful the surface tension is Halobates are distributed around the Questions remain about whether the available egg deposit sites, are rather strategies for survival lowered by pollutants world roughly between latitudes 40- insects require the warm ocean waters large in size compared to the body size in an aqueous envi- or detergents, they flop degrees north or south of the equator. in this region or whether they are dis- of the female who produces 10 to 20 ronment. However, if we on the surface and eventu- Do Halobates require these warm waters, tributed more widely but scientists have matured eggs at a time.
Recommended publications
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
    RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M.
    [Show full text]
  • A Bug on the Ocean Waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at A bug on the ocean waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1 L. CHENG Abstract: Five species of Halobates are the only insects known to live on the open ocean. Here is a brief description of what they are, where to find them, some of their special adaptations and their origins. Key words: Gerridae, Halobates, Heteroptera, marine, ocean. Introduction scribed species (ANDERSEN & WEIR 2004). Most of the known gerrid species are fresh- Insects are ubiquitous on land but they water in habitat and can be found on ponds, are commonly thought to be completely ab- lakes, streams, rivers, waterfalls and even sent from the sea, which covers more than temporary rain-filled pools. However, some 70 % of the earth’s surface. This is actually 80 species are considered marine. These be- not quite true. A large variety of insects do long to 11 genera in 3 subfamilies: Trepo- occur in various marine environments batinae, Rhagadotarsinae, and Halobatinae, (CHENG 1976). In fact, marine representa- to which Halobates belongs. tives can be found in at least 20 orders of the Insecta (CHENG 2003), the most important The genus Halobates was created in 1822 being the Collembola, Heteroptera, Coleo- by ESCHSCHOLTZ for 3 insect species collect- ptera and Diptera (CHENG & FRANK 1993). ed during a circumnavigation expedition. Among the Gerromorpha (Heteroptera), Many new species were added during the marine species can be found in five of the subsequent years, some from major ocean six known families: Gerridae, Hebridae, basins and others from various near-shore Hermatobatidae, Mesoveliidae and Veli- habitats.
    [Show full text]
  • As Prey of Eastern Tropical Pacific Seabirds
    Cheng et al.: Marine insects as seabird prey 91 IMPORTANCE OF MARINE INSECTS (HETEROPTERA: GERRIDAE, HALOBATES SPP.) AS PREY OF EASTERN TROPICAL PACIFIC SEABIRDS LANNA CHENG1, LARRY SPEAR2* & DAVID G. AINLEY2 1Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92037, USA 2H.T. Harvey & Associates, 983 University Avenue, Bldg. D, Los Gatos, California, 95032, USA ([email protected]) *Deceased Received 15 July 2009, accepted 31 May 2010 SUMMARY CHENG, L., SPEAR, L.B. & AINLEY, D.G. 2010. Importance of marine insects (Heteroptera: Gerridae, Halobates spp.) as prey of eastern tropical Pacific seabirds. Marine Ornithology 38: 91–95. We analyzed the foraging ecology of seabirds in the eastern tropical Pacific Ocean during 1983–1991 on a series of oceanographic cruises during spring and fall of each year. We report details about the consumption of sea skaters Halobates spp., marine insects that are small, can hide well within sea foam, and can be very fast moving. One abundant sea skater of the four species present in the study area, H. sobrinus, is not taken by sea birds, and the reason is unknown. Among the predators, it appears that frigate storm-petrels, White-faced Storm-Petrel Pelagodroma marina and White-bellied Storm-Petrel Fregetta grallaria (likely also White-throated Storm-Petrel Nesofregetta fuliginosa), make directed efforts to consume sea skaters, a fact that may explain their unique flight and foraging behavior: slow, with extensive “kick splashing” against the sea surface, to incite movement in Halobates. The few other seabirds for which sea skaters constitute more than an incidental component of the diet (Herald Petrel Pterodroma heraldica, Bulwer’s Petrel Bulweria bulwerii) also move slowly across and close to the sea surface.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Carnegie Institution of Washington Monograph Series
    BTILL UMI Carnegie Institution of Washington Monograph Series BT ILL UMI 1 The Carnegie Institution of Washington, D. C. 1902. Octavo, 16 pp. 2 The Carnegie Institution of Washington, D. C. Articles of Incorporation, Deed of Trust, etc. 1902. Octavo, 15 pp. 3 The Carnegie Institution of Washington, D. C. Proceedings of the Board of Trustees, January, 1902. 1902. Octavo, 15 pp. 4 CONARD, HENRY S. The Waterlilies: A Monograph of the Genus Nymphaea. 1905. Quarto, [1] + xiii + 279 pp., 30 pls., 82 figs. 5 BURNHAM, S. W. A General Catalogue of Double Stars within 121° of the North Pole. 1906. Quarto. Part I. The Catalogue. pp. [2] + lv + 1–256r. Part II. Notes to the Catalogue. pp. viii + 257–1086. 6 COVILLE, FREDERICK VERNON, and DANIEL TREMBLY MACDOUGAL. Desert Botani- cal Laboratory of the Carnegie Institution. 1903. Octavo, vi + 58 pp., 29 pls., 4 figs. 7 RICHARDS, THEODORE WILLIAM, and WILFRED NEWSOME STULL. New Method for Determining Compressibility. 1903. Octavo, 45 pp., 5 figs. 8 FARLOW, WILLIAM G. Bibliographical Index of North American Fungi. Vol. 1, Part 1. Abrothallus to Badhamia. 1905. Octavo, xxxv + 312 pp. 9 HILL, GEORGE WILLIAM, The Collected Mathematical Works of. Quarto. Vol. I. With introduction by H. POINCARÉ. 1905. xix + 363 pp. +errata, frontispiece. Vol. II. 1906. vii + 339 pp. + errata. Vol. III. 1906. iv + 577 pp. Vol. IV. 1907. vi + 460 pp. 10 NEWCOMB, SIMON. On the Position of the Galactic and Other Principal Planes toward Which the Stars Tend to Crowd. (Contributions to Stellar Statistics, First Paper.) 1904. Quarto, ii + 32 pp.
    [Show full text]
  • THE GENUS HALOBATES (Hemiptera: Gerridae)
    Pacific Insects 3 (2-3): 223-305 July 31, 1961 THE GENUS HALOBATES (Hemiptera: Gerridae) By Jon L. Herring1 INTRODUCTION Relatively few insects inhabit the sea. Certain Diptera, Coleoptera and a half dozen genera of Hemiptera may be considered marine because they occupy saline situations, such as rocky beaches, intertidal flats, mangrove swamps and the like, but only the water strid- ers have invaded the open ocean. Little is known of the distribution of the veliid, Halovelia, or the gerrid, Hermatobates, although both of these water striders have been taken in lagoons, coral reefs and harbors. It appears that these two genera, although exclusively halophilous, are confined to coastal situations. Water striders of the genus Halobates, however, are truly oceanic in habit. Several species maintain their entire existence hundreds of miles from the nearest land and have been taken on or near shore only after storms. The early workers considered all species of this genus to have an open-ocean distri­ bution since the attention of the early voyagers was attracted to these silvery gray insects only on the open sea. We now know, however, that only a few of the species maintain this existence. Most of them are endemic to particular islands or island groups. In this study all previous work has been reviewed. Much new material has been stud­ ied, and biological observations were made at the Marine Biological Station of the Uni­ versity of Hawaii. The resulting revision is the first since that of Buchanan-White 75 years ago. ACKNOWLEDGMENTS I wish first to express my appreciation to Dr.
    [Show full text]
  • Notes on the Ecology of the Oceanic Insect Halobates
    MFR PAPER 1032 Lanna ' heng i a rn~lI\hl'r III till' \Iarine Life R ~ 'e ardl Group. cripp" In,litution of (hcan .. ograph), LniHf'oil) of (alilor .. nia. an l)i eJ,!o. La JIIII.!. (' \ Tens of thousands of genera of insects 92037. are known on land: there is only one on the sea-Ha lobates . about 2 month, lor the L'g!! III d,'\elt p into mature ,ldulh. r hc ,~ . c, .1IC 11111 dl,tlngul,hahle unlil Ihe I.I\! Il\ IllI h I Notes on the Ecology of the stage. Oceanic Insect Halobates The,e In,cct, II\e e'\dll'l\ch "ll Ih.: surfacc of the ocean . ..t Ihc\ .IrC \1 I Ill! les) and cannot 11\. Ilhllugh "'\l1' earlier \\llrk~r, ha\c rcr"rtni Ih,1I Halohal{"l can dl\e. I hd\c nUl bccll LANNA CHENG able to induce them III d" ,(I HU\I" eyer. \\hen lhe) arc 1,lrccd 1I1llkr watcr lhc) can ,\llm I,'r ,I, 1'"lg.1 .111 INTRODUCTION Iy rclated to surface properties of the hour or 1\\0. Thl' ahilll\ tIl \\ '11 ocean suc h as temperature. salinit). undcr \\ atcr 1\ rre,umdhh Imr"[(,lnl Members of the genus H alobares surface c urre nts. and winds ( avilov. for the suni\al 01 lhe,e IlhCCh IIll.l (H cteroptcra:Gerridae) are the o nly 1967). in ~torm\ the) arc rr(lhabh "iten known insects found in the oceans, submerged b) \\a\e, llr pr.t\ l t yet they are a m o ng the least studi ed GENERAL BIOLOGY mately the) Illu,l re .
    [Show full text]
  • Pearl Harbor National Wildlife Refuge
    U.S. Fish & Wildlife Service Draft Comprehensive Conservation Plan and Environmental Assessment Refuge Wildlife HarborPearl National U.S. Department of the Interior U.S. Fish and Wildlife Service O‘ahu National Wildlife Refuge Complex 66-590 Kamehamea Highway, Rm 2C Pearl Harbor Hale‘iwa, Hawai‘i 96712 National Wildlife Refuge Phone: 808/637-6330 Fax: 808/828-6634 http://www.fws.gov Draft Comprehensive Conservation Plan National Wildlife Refuge System Information and Environmental Assessment 1 800/344 WILD August 2010 The mission of the U.S. Fish and Wildlife Service is working with others to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continuing benefit of the American people. Cover Photos: Waiawa Unit wetland/Laura Beauregard, USFWS Ae‘o/Laura Beauregard, USFWS ‘Alae ke‘oke‘o chick/Mike Silbernagle, USFWS August ‘Ewa hinahina/USFWS 2010 Pearl Harbor National Wildlife Refuge Ka Nu‘ukia He lei momi. He pu‘uhonua a ka¯kou… Ma ka lihikai o Pearl Harbor i nalo ai na¯ pa¯lielie o Honouliuli a me Wahiawa i na ho‘omohala ku¯kulu kaianoho no na¯ kanaka, a he pu‘uhonua nui loa ho‘i e like no ho‘i me ka nui o ka nakilinaka o Alika. He waiwai nui ho‘i ke¯ia mau wahi elua no na¯ manu leleaoa a me na manu wai ‘o Hawai‘i nei. Na¯na¯ no ho‘i na¯ i kanaka hoihoi loa i ke kilo manu in a¯ manu mai ka Wahi Kilo Manu o Betty Bliss mai, a e lilo pu ho‘i lakou i ho‘okahi me na¯ mea ola o ka aina.
    [Show full text]
  • Mitochondrial DNA Sequence Variation and Phylogeography of Oceanic Insects (Hemiptera: Gerridae: Halobates Spp.)
    Marine Biology (2000) 136: 421±430 Ó Springer-Verlag 2000 N. M. Andersen á L. Cheng á J. Damgaard F. A. H. Sperling Mitochondrial DNA sequence variation and phylogeography of oceanic insects (Hemiptera: Gerridae: Halobates spp.) Received: 29 July 1999 / Accepted: 23 November 1999 Abstract Relatively few insects have invaded the marine Introduction environment, and only ®ve species of sea skaters, Halo- bates Eschscholtz (Hemiptera: Gerridae), have success- Although unparalleled among metazoans in their evolu- fully colonized the surface of the open ocean. All ®ve tionary success on land and in freshwater, relatively few species occur in the Paci®c Ocean, H. germanus White insects have invaded the intertidal zone of the marine also occurs in the Indian Ocean, whereas H. micans Esch- environment (Cheng 1976). Only ®ve species of sea scholtz is the only species found in the Atlantic Ocean. We skaters (Hemiptera, Gerridae), Halobates germanus sequenced a 780 bp long region of the mitochondrial cy- White, H. micans Eschscholtz, H. sericeus Eschscholtz, tochrome oxidase subunit I gene (COI) for a total of 66 H. sobrinus White, and H. splendens Witlaczil have suc- specimens of the ®ve oceanic Halobates species. Our cessfully colonized the open ocean (Herring 1961; An- purpose was to investigate the genetic variation within dersen and Polhemus 1976; Andersen 1982, 1991; Cheng species and estimate the amount of gene ¯ow between 1985), where adults and juveniles spend their entire life on populations. We de®ned 27 haplotypes for H. micans and the sea surface, always at some distance from land. They found that haplotype lineages from each of the major feed on other animals belonging to the pleustonic com- oceans occupied by this species are signi®cantly dierent, munity and are themselves preyed upon by seabirds and having sequences containing ®ve to seven unique base pelagic ®sh (Cheng 1975; Cheng and Harrison 1983; substitutions.
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • Scripps Institution of Oceanography Contributions Index Vols. 52-71, 1982-2001
    UC San Diego Scripps Institution of Oceanography Technical Report Title Scripps Institution of Oceanography Contributions Index Vols. 52-71, 1982-2001 Permalink https://escholarship.org/uc/item/6jm6m8bw Author Lett, Phyllis C. Publication Date 2003-04-01 eScholarship.org Powered by the California Digital Library University of California Scripps Institution of Oceanography Contributions Index Vols. 52-71, 1982-2001 compiled by Phyllis C. Lett April 2003 The following citations were published in the Scripps Institution of Oceanography Contributions from volumes 52-71, 1982-2001. Submission of publications to the Contributions by Scripps authors was voluntary, so the citations below do not comprise an institutional bibliography for these years. The SIO Contributions ceased with volume 71. These citations are not arranged in any order, either chronologically or by author. A quick glance can mislead the reader to assume that there is order but it is due to the compilation of these citations from individual files. Use document searching cababilities to search this bibliography. .................................................... AMMERMAN, JAMES W. (with Farooq Azam). Uptake of cyclic AMP by natural populations of marine bacteria. Applied and Environmental Microbiology, v.43, no.4, 1982. pp.869-876. ANDERSON, JOHN G. (with T. H. Heaton). Aftershock accelerograms recorded on a temporary array. United States. Geological Survey. Professional Papers, v. 1254, 1982. pp.443-451. ANDERSON, JOHN G. Consequence of an earthquake prediction on statistical estimates of seismic risk. Seismological Society of America. Bulletin, v.71, no.5, 1981. pp.1637-1648. ANDERSON, JOHN G. Revised estimates for the probabilities of earthquakes following observation of unreliable precursors. Seismological Society of America.
    [Show full text]
  • Andersen Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Email: Nmandersen@Zmuc*Ku*Dk
    Marine water striders of the Indo-Pacific 341 Marine water striders (Heteroptera, Gerromorpha) of the Indo-Pacific: cladistic biogeography and Cenozoic palaeogeography N Møller Andersen Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Email: nmandersen@zmuc*ku*dk Key words: cladistic biogeography, Cenozoic palaeogeography, Indo-Pacific, marine water striders, Heteroptera, Gerromorpha Abstract Boer and Duffels, 1996) In general, patterns of distribution seem to be compatible with a set of More than 140 species of marine water striders (Heterop- hierarchical relationships between more re- tera, Gerromorpha), representing three families and 11 gen- stricted areas of endemism These are quite simi- era, are distributed throughout the Indo-Pacific region! The lar to those delimited by Gressitt (1956) and largest genera are: Hermatobates (Hermatobatidae), Halove- lia, Haloveloides, Xenobates (Veliidae), Asclepios, Halobates, Gressitt et al* (1961), although the areas of the Rheumatometroides, and Stenobates (Gerridae)! Marine wa- Indian Ocean were not recognized as part of ter striders live in estuaries, mangroves, intertidal coral reef their Pacific region Malesia (as defined by flats, and on the sea surface near coral reefs and rocky Whitmore, 1981, 1987) is seemingly not a genu- coasts! Adult marine water striders are always wingless but may disperse along coasts and chains of islands! Five spe- ine, monophyletic area of endemism (Andersen, cies of sea skaters, Halobates, have colonized the
    [Show full text]