Characterization of Mitochondrial Genomes of Three Andrena Bees (Apoidea: Andrenidae) and Insights Into the Phylogenetics

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Mitochondrial Genomes of Three Andrena Bees (Apoidea: Andrenidae) and Insights Into the Phylogenetics International Journal of Biological Macromolecules 127 (2019) 118–125 Contents lists available at ScienceDirect International Journal of Biological Macromolecules journal homepage: http://www.elsevier.com/locate/ijbiomac Characterization of mitochondrial genomes of three Andrena bees (Apoidea: Andrenidae) and insights into the phylogenetics Bo He a,b,1, Tianjuan Su c,1,ZeqingNiuc,ZeyangZhoua, Zhanying Gu b,⁎, Dunyuan Huang a,⁎ a Chongqing Key Laboratory of Vector Insects, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China b Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China c Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China article info abstract Article history: Andrena is a large bee genus of N1500 species, which includes many important pollinators of agricultural systems. Received 2 October 2018 In this study, we present three mitochondrial genomes (mitogenomes) of Andrena species, which are the polli- Received in revised form 8 January 2019 nators of Camellia oleifera. Compared with putative ancestral gene arrangement of insects, the three Accepted 8 January 2019 mitogenomes present identical gene rearrangement events, including local inversion (trnR) and gene shuffling Available online 09 January 2019 (trnQ/trnM, trnK/trnD, and trnW/trnC-trnY). Most PCGs initiate with standard ATN codon and share the stop codon of TAA or TAG, whereas truncated stop codon T was detected in the atp6 gene of A. chekiangensis.Further- Keywords: Andrena more, the nad4 gene end with a single T in all three Andrena species. All tRNAs could be folded into clover-leaf Phylogeny secondary structure except for trnS1, with the dihydrouracil (DHU) arm forming a simple loop. Phylogenetic Mitochondrial genome analysis is performed on 17 Andrena mitogenomes. Maximum likelihood and Bayesian methods generate identi- cal topology, in which A. hunanensis and A. striata form a group and are close to A. camellia. Although A. chekiangensis is also difficult to be distinguished from A. camellia by morphological methods, A. chekiangensis and A. haemorrhoa form a clade and are grouped with the other taxa of the genus Andrena. © 2019 Published by Elsevier B.V. 1. Introduction Andrena Fabricius is a large bee genus of N1500 species, which is dis- tributed predominantly in Holarctic [10,11]. These bees are important Camellia oleifera Abel. is the most important woody oil tree in China, pollinators of agricultural systems and nest solitarily or communally in with the cultivated area of approximately 3.7 million hectares [1]. It is the ground [12]. While most Andrena species fly in the spring, there self-sterile because of prezygotic late-acting self-incompatibility [2,3], are also bivoltine and univoltine taxa that emerge in summer and au- with sexual reproduction dependent on the pollinators [4]. C. oleifera tumn. They exhibit a range of diet breadth, from polylectic to oligolectic blooms from autumn to winter, during which the pollinators are limited [13,14]. Therefore, the genus Andrena is an excellent group to study the due to the low temperature. It has been reported that Andrena camellia evolution of pollen diet [15,16]. However, although Andrena species (Andrenidae) and Colletes gigas (Colletidae) are the main pollinators of have a wide range of biological characteristics, they are so morphologi- C. oleifera [4–8]. Although our field observations find that Andrena cally uniform to be distinguished from each other. It would also be a chekiangensis, Andrena hunanensis,andAndrena striata are also widely challenge to clarify their phylogenetic relationships. distributed in oil-tea forest, they are rarely described as the pollinators. The typical insect mitochondrial genome (mitogenome) is a The reason may be that these three flower visitors exhibit similar mor- 15–18 kb circular molecule, including 13 protein-coding genes (PCGs), phologic features with A. camellia [9]. They may be incorrectly identified two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), as A. camellia. Therefore, it is important to clarify the phylogenetic rela- and a control region that contains the initial sites of replication and tran- tionships of the pollinators of C. oleifera. scription [17–19]. Owing to some unique characters like small size, ma- ternal inheritance, strict orthologous genes, fast evolution rate, and low rate of recombination, mitogenome has been widely used as a molecu- lar marker for comparative and evolutionary genomics, and phyloge- ⁎ Corresponding authors. netic analysis at different taxonomic levels [19–21]. E-mail addresses: [email protected] (Z. Gu), [email protected] fi (D. Huang). To date, fteen mitogenomes of Andrena are available in GenBank 1 These authors contributed equally to this work. [22,23], which would increase our understanding about taxonomic https://doi.org/10.1016/j.ijbiomac.2019.01.036 0141-8130/© 2019 Published by Elsevier B.V. B. He et al. / International Journal of Biological Macromolecules 127 (2019) 118–125 119 Table 1 2. Materials and methods Summary of mitogenomes used in this study. Family Species Total size (bp) Genbank accession no. 2.1. Samples collection and DNA extraction Andrenidae Andrena angustior 15,252 KT164658 Andrenidae Andrena bicolor 15,422 KT164666 Three Andrena species (A. chekiangensis, A. hunanensis,andA. striata) Andrenidae Andrena chrysosceles 15,692 KT164602 were collected from oil-tea forest of Jiangxi, China, in November 2017. Andrenidae Andrena cineraria 17,069 KT164628 All specimens were stored in absolute ethyl alcohol at −20 °C freezer Andrenidae Andrena dorsata 16,333 KT164633 in Key Laboratory of Animal Biology, Chongqing Normal University. Andrenidae Andrena haemorrhoa 15,936 KT164645, KT164635 Andrenidae Andrena semilaevis 16,459 KT164629 Total genomic DNA was extracted separately from each specimen Andrenidae Andrena minutula 15,302 KT164675 with the Tissure DNA Kit (Omega Bio-Tek, Norcross, GA, USA) following Andrenidae Andrena subopaca 14,747 KT164612 the manufacturer's instructions. Andrenidae Andrena flavipes 15,074 KT164679 Andrenidae Andrena fulva 15,318 KT164623 2.2. Sequencing and assembly Andrenidae Andrena labiata 15,074 KT164613 Andrenidae Andrena nigroaenea 15,376 KT164665 Andrenidae Andrena nitida 14,996 KT164636 The mitogenomes were generated by next-generation sequencing. Andrenidae Andrena camellia 15,065 KX241615 After the exacted total genomic DNA was quantified, sequences were Andrenidae Andrena chekiangensis 15,804 MH982580 fragmented to an average size of 450 bp using Covaris M220 system. Andrenidae Andrena hunanensis 14,780 MH982581 Andrenidae Andrena striata 14,736 MH982582 The library with two indexes was constructed using the Illumina Halictidae Seladonia tumulorum 15,268 KT164609 TruSeq™ DNA Sample Prep Kit (Illumina, San Diego, CA, USA) and se- Colletidae Colletes gigas 15,885 KM978210 quenced by the platform Illumina Hiseq 4000 with the strategy of 360 Colletidae Hylaeus dilatatus 15,475 NC_026468 paired-ends. Approximately 10 Gb paired-end reads of 150 bp length were generated. The quality of raw sequences was assessed using and phylogenetic relationships of this genus. In this study, we se- FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). quenced three other mitogenomes of Andrena species, compared the The software of FASTX toolkit 0.013 (http://hannonlab.cshl.edu/fastx_ characters in detail and analyzed their phylogenetic relationships. toolkit/)wasalsousedtofilter the low quality sequences. The Fig. 1. Circular map of the three Andrena mitogenomes. Different color exhibits the nucleotide identity of BLAST searches. The species from outside to inside as follows, respectively: A. chekiangensis, A. striata,andA. hunanensis. 120 B. He et al. / International Journal of Biological Macromolecules 127 (2019) 118–125 Andrena angustior Andrena flavipes 0 Andrena dorsata Andrena semilaevis Andrena minutula Andrena subopaca 1.12 Andrena nigroaenea Andrena nitida Andrena camellia 2.25 Andrena chekiangensis Andrena fulva Andrena hunanensis 3.38 Andrena striata Andrena haemorrhoa Andrena labiata 4.5 Andrena bicolor Andrena cineraria TGT(C) GTC(V) CTC(L) ACG(T) CCG(P) CAG(Q) CAC(H) AGT(S) CAT(H) ACT(T) GTT(V) CGA(R) GCA(A) TCT(S) CAA(Q) CCC(P) GCC(A) TCC(S) GAC(D) ATC(I) GAG(E) CTT(L) ACC(T) TAC(Y) AAC(N) TTC(F) AAG(K) ATG(M) TGG(W) AGG(S) CGC(R) AGC(S) CTG(L) TCG(S) GGC(G) GCG(A) CGG(R) GTG(V) TGC(C) GGG(G) TTG(L) CTA(L) CGT(R) GGT(G) CCT(P) TTA(L) TCA(S) ACA(T) CCA(P) TGA(W) AGA(S) GTA(V) TAT(Y) TTT(F) AAA(K) ATT(I) GAA(E) GGA(G) ATA(M) AAT(N) GAT(D) GCT(A) Fig. 2. The relative synonymous codon usage (RSCU) of PCGs in Andrena mitogenomes. The x-axis and y-axis indicate the hierarchical clustering of codon frequencies and Andrena species, respectively. downstream analyses were performed on clean data of high quality substitution models were confirmed by PartitionFinder 2.1.1 [37]with (Q20 N 90% and Q30 N 85%). The mitogenomes were reconstructed by the Bayesian Information Criterion (BIC). The sequences were pre- MITObim v1.7 [24] with the default parameters, and the mitogenome defined by both gene types (13 PCGs, 22 tRNAs, and two rRNAs) and of A. camellia (GenBank accession no: KX241615) was employed as a codon positions (the first, second, and third codon positions of each reference. PCG). The maximum likelihood (ML) analysis was inferred using IQ-TREE 2.3. Bioinformatic analysis [38]. Branch support was conducted with 1000 replicates of ultrafast likelihood bootstrap. Bayesian inference (BI) analysis was estimated The secondary structures of tRNAs were predicted by Mitos using MrBayes 3.2.6 [39]. Two independent runs were performed, WebServer [25] under the invertebrate mitochondrial genetic code. each with three hot chains and one cold chain, with posterior distribu- The PCGs and rRNAs boundaries were determined by the positions of tions estimated using Markov Chain Monte Carlo (MCMC) sampling.
Recommended publications
  • UNIVERSITY of READING Delivering Biodiversity and Pollination Services on Farmland
    UNIVERSITY OF READING Delivering biodiversity and pollination services on farmland: a comparison of three wildlife- friendly farming schemes Thesis submitted for the degree of Doctor of Philosophy Centre for Agri-Environmental Research School of Agriculture, Policy and Development Chloe J. Hardman June 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Chloe Hardman i Abstract Gains in food production through agricultural intensification have come at an environmental cost, including reductions in habitat diversity, species diversity and some ecosystem services. Wildlife- friendly farming schemes aim to mitigate the negative impacts of agricultural intensification. In this study, we compared the effectiveness of three schemes using four matched triplets of farms in southern England. The schemes were: i) a baseline of Entry Level Stewardship (ELS: a flexible widespread government scheme, ii) organic agriculture and iii) Conservation Grade (CG: a prescriptive, non-organic, biodiversity-focused scheme). We examined how effective the schemes were in supporting habitat diversity, species diversity, floral resources, pollinators and pollination services. Farms in CG and organic schemes supported higher habitat diversity than farms only in ELS. Plant and butterfly species richness were significantly higher on organic farms and butterfly species richness was marginally higher on CG farms compared to farms in ELS. The species richness of plants, butterflies, solitary bees and birds in winter was significantly correlated with local habitat diversity. Organic farms supported more evenly distributed floral resources and higher nectar densities compared to farms in CG or ELS. Compared to maximum estimates of pollen demand from six bee species, only organic farms supplied sufficient pollen in late summer.
    [Show full text]
  • Irish Solitary Bees
    Molecular Ecology Resources (2012) 12, 990–998 doi: 10.1111/1755-0998.12001 DNA barcoding a regional fauna: Irish solitary bees KARL N. MAGNACCA*† andMARK J. F. BROWN*‡ *Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland, †State of Hawaii Division of Forestry and Wildlife, Hilo, HI 96720, USA, ‡School of Biological Sciences, Royal Holloway, University of London, Egham, TW20 0EX, UK Abstract As the globally dominant group of pollinators, bees provide a key ecosystem service for natural and agricultural landscapes. Their corresponding global decline thus poses an important threat to plant populations and the ecosys- tems they support. Bee conservation requires rapid and effective tools to identify and delineate species. Here, we apply DNA barcoding to Irish solitary bees as the first step towards a DNA barcode library for European solitary bees. Using the standard barcoding sequence, we were able to identify 51 of 55 species. Potential problems included a suite of species in the genus Andrena, which were recalcitrant to sequencing, mitochondrial heteroplasmy and para- sitic flies, which led to the production of erroneous sequences from DNA extracts. DNA barcoding enabled the assignment of morphologically unidentifiable females of the parasitic genus Sphecodes to their nominal taxa. It also enabled correction of the Irish bee list for morphologically inaccurately identified specimens. However, the standard COI barcode was unable to differentiate the recently diverged taxa Sphecodes ferruginatus and S. hyalinatus. Overall, our results show that DNA barcoding provides an excellent identification tool for Irish solitary bees and should be rolled out to provide a database for solitary bees globally.
    [Show full text]
  • NL Bijen H20 Literatuur.Pdf
    HOOFDSTUK 20 LITERATUUR Achterberg, C. van Can Townes type malaise traps be im- Alford, D.V. Bumblebees. – Davis-Poynter, London. proved? Some recent developments. – Entomologische Berichten : Al-Ghzawi, A., S. Zaitoun, S. Mazary, M. Schindler & D. Witt- -. mann Diversity of bees (Hymenoptera, Apiformes) in extensive Achterberg, C. van & T.M.J. Peeters Naamgeving, verwant- orchards in the highlands of Jordan. – Arxius de Miscellània Zoològica schappen en diversiteit. – In: T.M.J. Peeters, C. van Achterberg, : -. W.R.B. Heitmans, W.F. Klein, V. Lefeber, A.J. van Loon, A.A. Mabe- Almeida, E.A.B. a Colletidae nesting biology (Hymenoptera: lis, H. Nieuwenhuijsen, M. Reemer, J. de Rond, J. Smit & H.H.W. Apoidea). – Apidologie : -. Velthuis, De wespen en mieren van Nederland (Hymenoptera: Acule- Almeida, E.A.B. b Revised species checklist of the Paracolletinae ata). Nederlandse Fauna . Nationaal Natuurhistorisch Museum Na- (Hymenoptera, Colletidae) of the Australian region, with the descrip- turalis, Uitgeverij & European Invertebrate Survey-Nederland, tion of new taxa. – Zootaxa : -. Leiden: -. Almeida, E.A.B. & B.N. Danforth Phylogeny of colletid bees Adriaens, T. & D. Laget To bee or not to bee. Mogelijkheden (Hymenopera: Colletidae) inferred from four nuclear genes. – Molecu- voor het houden van bijenvolken in natuurgebieden: een inschatting. lar Phylogenetics and Evolution : -. – Advies van het Instituut voor Natuur- en Bosonderzoek, Almeida, E.A.B., L. Packer & B.N. Danforth Phylogeny of the INBO.A... Xeromelissinae (Hymenoptera: Colletidae) based upon morphology Aizen, M.A. & L.D. Harder The global stock of domesticated and molecules. – Apidologie : -. honey bees is growing slower than agricultural demand for pollination. Almeida, E.A.B., M.R.
    [Show full text]
  • Phd-Willem-Proesmans.Pdf
    Dutch translation of the title: “Het belang van kleine bosfragmenten voor bestuivingsdiensten in landbouwlandschappen” Illustration on the cover: Front: Andrena haemorrhoa (Sara Beernaert) Back: Volucella bombylans (Sara Beernaert) ISBN: 978-94-6357-178-4 Institution: Ghent University Supervisors: Prof. Dr. Ir. Kris Verheyen Prof. Dr. Dries Bonte Prof. Dr. Ir. Guy Smagghe Dr. Ivan Meeus Dean: Prof. Dr. Ir. Marc Van Meirvenne Rector: Prof. Dr. Ir. Rik Van de Walle 2 The importance of small forest fragments for pollination services in agricultural landscapes Willem Proesmans Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Forest and Nature management 3 4 Table of Contents Dankwoord .................................................................................................................................... 7 Abstract ......................................................................................................................................... 8 Samenvatting ................................................................................................................................ 9 Abstract ....................................................................................................................................... 10 Chapter 1: Introduction .............................................................................................................. 11 1. Biodiversity loss ....................................................................................................................
    [Show full text]
  • Bee Behavioural Plasticity in a Global Change Context Miguel Ángel Collado Aliaño
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Estación Biológica de Doñana & Centre de Recerca Ecològica i Aplicacions Forestals Bee behavioural plasticity in a global change context | Miguel Ángel Collado Aliaño Ignasi Bartomeus Roig Daniel Sol Rueda 4 Bee behavioural plasticity in a global change context | Page Prólogo ............................................................................................................................................................... 7 General abstract ........................................................................................................................................... 9 General introduction: ...................................................................................................................................... 11 The status of global change in pollinators .................................................................................. 11 Animals facing new challenges ........................................................................................................
    [Show full text]
  • Том 13. Вып. 1 Vol. 13. No. 1
    РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт аридных зон ЮНЦ RUSSIAN ACADEMY OF SCIENCES Institute of Arid Zones SSC ISSN 1814−3326 CAUCASIAN ENTOMOLOGICAL BULLETIN Том 13. Вып. 1 Vol. 13. No. 1 Ростов-на-Дону Rostov-on-Don 2017 Кавказский энтомол. бюллетень 13(1): 99–109 © CAUCASIAN ENTOMOLOGICAL BULL. 2017 К познанию пчел рода Andrena Fabricius, 1775 (Hymenoptera: Apoidea: Andrenidae) Азербайджана To the knowledge of the genus Andrena Fabricius, 1775 (Hymenoptera: Apoidea: Andrenidae) of Azerbaijan Х.А. Алиев1, М.Ю. Прощалыкин2, М.М. Магеррамов3, Г.А. Гусейнзаде1 Kh.A. Aliyev1, M.Yu. Proshchalykin2, M.M. Maharramov3, G.A. Huseinzade1 1Институт зоологии НАН Азербайджана, проезд 1128, квартал 504, Баку AZ 1073 Азербайджан 2Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН, пр. 100 лет Владивостоку, 159, Владивосток 690022 Россия 3Институт биоресурсов Нахичеванского отделения НАН Азербайджана, ул. Бабек, 10, Нахичевань АZ 7000 Азербайджан 1Institute of Zoology of National Academy of Sciences of Azerbaijan, passage 1128, district 504, Baku AZ 1073 Azerbaijan. E-mail: [email protected], [email protected] 2Federal Scientific Center of the East Asia Terrestrial Biodiversity, Russian Academy of Sciences, Far East Branch, 100 let Vladivostoku Avenue, 159, Vladivostok 690022 Russia. E-mail: [email protected] 3Institute of Bioresources of Nakhchivan Branch of National Academy of Sciences of Azerbaijan, Babak str., 10, Nakhchivan AZ 7000 Azerbaijan. E-mail: [email protected] Ключевые слова: Andrenidae, Andrena, фауна, ландшафты, биотопы, трофические связи, Кавказ, Палеарктика. Key words: Andrenidae, Andrena, fauna, landscapes, biotopes, trophical links, Caucasus, Palaearctic region. Резюме. Приведен аннотированный список на юге. Род насчитывает более 1500 видов, из которых 56 видов пчел рода Andrena Fabricius, 1775, относяшихся около 950 видов известны из Палеарктики [Gusenleitner, к 15 подродам, из которых A.
    [Show full text]
  • Northern Ireland Threatened Bee Report
    SavingContents the small things that run the planet Anna Hart Table of Contents Northern Ireland Threatened Bee Report 2 Other bees of conservation concern in Northern Ireland 60 Acknowledgements 2 Species associations 64 Introduction 3 Flight Periods 69 Threatened bees in Northern Ireland- Species profiles 11 Species losses in Northern Ireland 70 County summaries Threatened bees in Northern Ireland Antrim 70 Andrena coitana (Small flecked mining bee) 14 Armagh 72 Andrena denticulata (Grey-banded mining bee) 16 Derry/Londonderry 74 Andrena fuscipes (Heather mining bee) 18 Down 75 Andrena nigroaenea (Buffish mining bee) 20 Fermanagh 78 Andrena praecox (Small Sallow mining bee) 22 Tyrone 79 Andrena semilaevis (Shiny-margined Mini-mining Bee) 24 Key sites for bees in Northern Ireland 80 Bombus (P.) barbutellus (Barbut's Cuckoo-bee) 26 References 81 Bombus (P.) campestris (Field Cuckoo-bee) 28 Recorders whose records are used in this report 87 Bombus ruderarius (Red-shanked Carder-bee) 31 Bombus (P.) rupestris (Red-tailed Cuckoo-bee) 34 Colletes floralis (Northern Colletes) 37 Hylaeus brevicornis (Short-horned Yellow-face Bee) 40 Hylaeus hyalinatus (Hairy Yellow-face Bee) 42 Lasioglossum nitidiusculum (Tufted Furrow-Bee) 44 Lasioglossum rufitarse (Rufous-footed Furrow Bee) 46 Nomada goodeniana (Gooden's Nomad) 48 Nomada obtusifrons (Flat-ridged Nomad Bee) 50 Nomada striata (Blunt-jawed Nomad) 52 Sphecodes ferruginatus (Dull-headed Blood-Bee) 54 Sphecodes gibbus (Dark-winged Blood-bee) 56 Sphecodes hyalinatus (Furry-bellied Blood Bee) 58 Sandpit blood-bee (Sphecodes pellucidus) female © Stephen Falk. Executive Summary There is widespread concern over the status of The Northern Ireland Threatened Bee Report has looked at 21 pollinators, as many insect groups including bees, target bee species considered to be at greatest risk on the island of butterflies, moths and hoverflies have declined Ireland, and which are present in Northern Ireland.
    [Show full text]
  • 1 Supplementary Methods 2 3 Historical Background 4 Beyond The
    1 2 Supplementary Methods 3 4 Historical Background 5 Beyond the important role of the phytochemical landscape driving insect herbivore diet breadth, 6 herbivorous insects are subject to a list of general factors that affect the diet breadth of foragers. 7 Originally broadly conceptualized for hunting animals by MacArthur & Pianka7, this list was adapted for 8 application to a pollinator diet by Wasser et al8. These factors are listed in Table S1 with common factors 9 between the two treatments. 10 11 Table S1: Factors favoring specialization in foraging as detailed in MacArthur & Pianka7 and their 12 corresponding construction in Waser et al’s8 study on pollinator specialization. The third column 13 describes the common factor in each treatment. The factor noted in green highlights the work which 14 helped inspire our study. 15 16 17 Baseline model 18 As with recent studies of ecological networks10 31, the makeup of the overall network model used 19 here has two major fundamental components: the structure of the pollination networks themselves and the 20 dynamics occurring on the networks. 21 The structure of a network describes which links (representing species interactions) between 22 plants (푝) and animal pollinators (푎) are present or absent, regardless of the strength of the link. Typical 23 ecological network studies have a collection of unique topological connections across different networks, 24 meaning only certain links of the possible links between plants and pollinators can potentially be realized 25 (Fig S1a). However, the networks we used in the models/simulations here were fully connected, meaning 26 all connections are possible (Fig S1b).
    [Show full text]
  • Catálogo De Las Abejas Del Subgénero Micrandrena Ashmead, 1899 (Hymenoptera: Apoidea: Andrenidae) Y Subgéneros Próximos De La Península Ibérica
    ARTÍCULO DE INVESTIGacIÓN Catálogo de las abejas del subgénero Micrandrena Ashmead, 1899 (Hymenoptera: Apoidea: Andrenidae) y subgéneros próximos de la Península Ibérica MARÍA JOSÉ DARDÓN1*, FÉLIX TORRES1* Y CONCEPCIÓN ORNOSA2* 1. Departamento de Biología Animal, Ecología, Parasitología y Edafología. Universidad de Salamanca. Campus Miguel de Unamuno, s/n. E-37071 Salamanca, España. * e-mail: [email protected]; [email protected] 2. Departamento de Zoología y Antropología Física. Facultad de Biología. Universidad Complutense. C/José Antonio Nováis, 2. E-28040 Madrid, España. * e-mail: [email protected] Recibido: 25-01-2010 Aceptado: 19-04-2010. Publicado online el 30-06-2010 ISSN: 0210-8984 RESUMEN En este catálogo se presenta un inventario actualizado de las especies del subgénero Micran- drena, además de abordarse otras que anteriormente pertenecían al mismo y que actualmente forman parte de los subgéneros Fumandrena Warncke, 1975 y Proxiandrena Schmid-Egger, 2005. Se presentan los datos taxonómicos, incluyendo sinonimias, de un total de 25 espe- cies y 4 subespecies. De cada una de las especies se indica su distribución, así como su presencia en la fauna ibérica. Este trabajo es la base para la posterior revisión taxonómica del subgénero Micrandrena en la Península. Palabras clave: Catálogo, Micrandrena, Península Ibérica, regiones zoogeográficas, sino- nimia. ABSTRACT Catalogue of the bees of the Micrandrena Ashmead, 1899 subgenus (Hymenoptera: Apoidea: Andrenidae) and allied species in the Iberian Peninsula This catalog presents an updated inventory of the species of the subgenus Micrandrena, also include other species which previously belonged to it and now are part of the subgenera Fumandrena Warncke, 1975 and Proxiandrena Schmid-Egger, 2005.
    [Show full text]
  • Pollinator Communities and Plant-Pollinator Interactions in Fragmented Calcareous Grasslands
    Pollinator communities and plant-pollinator interactions in fragmented calcareous grasslands Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Birgit Meyer geboren in Varel Göttingen, Juli 2007 D 7 1. Referent: Prof. Dr. Ingolf Steffan-Dewenter 2. Korreferent: Prof. Dr. Stefan Vidal Tag der mündlichen Prüfung: 19.07.07 CONTENTS CHAPTER 1: POLLINATORS IN AGRICULTURAL LANDSCAPES................................................... 1 Introduction .................................................................................................................... 2 Study region and study sites .......................................................................................... 3 Research objectives......................................................................................................... 6 Chapter outline ............................................................................................................... 6 Conclusions...................................................................................................................... 8 CHAPTER 2: IMPORTANCE OF LIFE HISTORY TRAITS FOR POLLINATOR LOSS IN FRAGMENTED CALCAROUS GRASSLANDS...........................................................................10 Abstract ..........................................................................................................................11 Introduction ...................................................................................................................11
    [Show full text]
  • Impacts of Neonicotinoid Use on Long-Term Population Changes in Wild Bees in England
    ARTICLE Received 7 Aug 2015 | Accepted 5 Jul 2016 | Published 16 Aug 2016 DOI: 10.1038/ncomms12459 OPEN Impacts of neonicotinoid use on long-term population changes in wild bees in England Ben A. Woodcock1,*, Nicholas J.B. Isaac1,*, James M. Bullock1, David B. Roy1, David G. Garthwaite2, Andrew Crowe2 & Richard F. Pywell1 Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. 1 NERC Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK. 2 FERA Science Ltd., Sand Hutton, York YO41 1LZ, UK. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to B.A.W. (email: [email protected]). NATURE COMMUNICATIONS | 7:12459 | DOI: 10.1038/ncomms12459 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12459 nsect pollinators are estimated to support 9.5% of world food findings provide an important contribution to the evidence base production1 and wild bees have an important role in the underpinning the current moratorium on the use of this Idelivery of this ecosystem service2.
    [Show full text]
  • Promoting Wild Bees in European Agricultural Landscapes Jeroen Alexander Scheper
    ALTERRA ALTERRA Promoting wild bees in European agricultural landscapes agricultural Promoting wild bees inEuropean Promoting wild bees in European SCIENTIFIC CONTRIBUTIONS agricultural landscapes The role of floral resources in driving and mitigating wild bee decline Jeroen Alexander Scheper 47 Jeroen Alexander Scheper Promoting wild bees in European agricultural landscapes The role of floral resources in driving and mitigating wild bee decline Jeroen Alexander Scheper The research presented in this thesis was conducted at Alterra in Wageningen, The Netherlands Alterra, Wageningen University & Research Centre, 2015 Alterra Scientific Contributions 47 Scheper, J.A. 2015. Promoting wild bees in European agricultural landscapes. The role of floral resources in driving and mitigating wild bee decline. Alterra, Wageningen University & Research Centre, Wageningen. Omslag: Wageningen UR, Communication Services Illustraties omslag: Timon, Emma en Linde Scheper Layout: Jeroen Scheper Drukwerk: Wageningen UR, Communication Services Promoting wild bees in European agricultural landscapes The role of floral resources in driving and mitigating wild bee decline Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. Th.L.M. Engelen, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 18 september 2015 om 10.30 uur precies door Jeroen Alexander Scheper geboren op 2 november 1978 te Hengelo, Overijssel Promotoren: prof. dr. H. Siepel prof.
    [Show full text]