Ant-Pollinator Conflict Results in Pollinator Deterrence but No Nectar Trade-Offs', Frontiers in Plant Science, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Ant-Pollinator Conflict Results in Pollinator Deterrence but No Nectar Trade-Offs', Frontiers in Plant Science, Vol Edinburgh Research Explorer Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar Trade-Offs Citation for published version: Villamil Buenrostro, N, Boege, K & Stone, GN 2018, 'Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar Trade-Offs', Frontiers in plant science, vol. 9. https://doi.org/10.3389/fpls.2018.01093 Digital Object Identifier (DOI): 10.3389/fpls.2018.01093 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Frontiers in plant science Publisher Rights Statement: Copyright © 2018 Villamil, Boege and Stone. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 ORIGINAL RESEARCH published: 14 August 2018 doi: 10.3389/fpls.2018.01093 Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar Trade-Offs Nora Villamil 1*, Karina Boege 2 and Graham N. Stone 1 1 Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom, 2 Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico Direct and indirect negative interactions between ant guards and pollinators on ant-plants are expected for two reasons. First, aggressive ants may deter pollinators directly. Second, pollinators benefit from plant investment in reproduction whilst ants benefit from plant investment in indirect defense, and resource allocation trade-offs between these functions could lead to indirect conflict. We explored the potential for ant-pollinator conflict in a Mexican myrmecophile, Turnera velutina, which rewards ants with extrafloral nectar and pollinators with floral nectar. We characterized the daily timing of ant and pollinator activity on the plant and used experiments to test for direct and indirect conflict between these two groups of mutualists. We tested for direct conflict by quantifying pollinator responses to flowers containing dead specimens of aggressive ant species, relative to unoccupied control flowers. We assessed indirect conflict by testing for the existence of a trade-off in sugar allocation between ant and pollinator rewards, evidenced Edited by: Massimo Nepi, by an increase in floral nectar secretion when extrafloral nectar secretion was prevented. University of Siena, Italy Secretion of floral and extrafloral nectar, activity of ants and pollinators, and pollen Reviewed by: deposition all overlapped in daily time and peaked within the first 2 h after flowers opened. Kleber Del-Claro, Federal University of Uberlandia, Brazil We found evidence of direct conflict, in that presence of ants inside the flowers altered Rubén Torices, pollinator behavior and reduced visit duration, although visit frequency was unchanged. Estacion Experimental de Zonas We found no evidence for indirect conflict, with no significant difference in the volume Aridas (EEZA), Spain or sugar content of floral nectar between control plants and those in which extrafloral *Correspondence: Nora Villamil nectar secretion was prevented. The presence of ants in flowers alters pollinator behavior [email protected] in ways that are likely to affect pollination dynamics, though there is no apparent trade- off between plant investment in nectar rewards for pollinators and ant guards. Further Specialty section: This article was submitted to studies are required to quantify the effect of the natural abundance of ants in flowers on Functional Plant Ecology, pollinator behavior, and any associated impacts on plant reproductive success. a section of the journal Frontiers in Plant Science Keywords: Turnera velutina, ant-plant, floral nectar, extrafloral nectar, resource allocation, indirect interactions, Myrmecophily Received: 20 April 2018 Accepted: 05 July 2018 Published: 14 August 2018 INTRODUCTION Citation: Villamil N, Boege K and Stone GN (2018) Ant-Pollinator Conflict Results Extrafloral nectaries, domatia, and food bodies are all means by which ant-plants (comprising in Pollinator Deterrence but no Nectar myrmecophiles and myrmecophytes) (Rosumek et al., 2009; Del-Claro et al., 2016) attract and Trade-Offs. Front. Plant Sci. 9:1093. support ants by providing nesting sites or nutrients (Rico-Gray and Oliveira, 2007; Rosumek et al., doi: 10.3389/fpls.2018.01093 2009). In return, ants attack herbivores, prune climbing vines and prevent fungal and microbial Frontiers in Plant Science | www.frontiersin.org 1 August 2018 | Volume 9 | Article 1093 Villamil et al. Ant-Pollinator Conflict: Deterrence but no Nectar Trade-Offs infestation on plant tissues (Bentley, 1977; Rosumek et al., 2009). Malé et al., 2012). Such castrating behavior inevitably reduces This mutualistic interaction is termed myrmecophily. availability of flowers and hence floral rewards for pollinators. Interactions involving two or more types of mutualists of a It has been suggested that the ultimate cause of castration by single host are common in nature, but multispecies interactions patrolling ants is promoting reallocation of plant resources from are much less studied than pairwise and intraguild mutualisms reproduction to growth (Yu and Pierce, 1998; Frederickson, (Strauss, 1997; Tscharntke and Hawkins, 2002; Strauss and 2009; Malé et al., 2012), and hence increases the availability of Irwin, 2004; Adler, 2008; Melián et al., 2009; Koptur et al., resources on which ant colonies depend. In ant species that are 2015). To date, most research on plant-animal interactions has obligate inhabitants of ant-plants, colony size is limited by the focused on pairwise relationships (e.g., plant-herbivore, plant- number of domatia (Fonseca, 1993, 1999; Orivel et al., 2011), pollinator, plant-fungus) in isolation from the community in which is positively correlated with plant investment in growth. which they are embedded (Strauss, 1997; Herrera, 2000; Dáttilo Consequently, resource allocation strategies toward these two et al., 2016; Del-Claro et al., 2018). This pairwise approach mutualists should be approached in a linked way because plant necessarily oversimplifies reality (Herrera, 2000) since plants investment toward growth may come at the cost of investment to interact sequentially or simultaneously with each of pollinators, reproduction, and vice versa. And so, plant investment in rewards herbivores, herbivore predators and pathogens (Armbruster, for each mutualist reward may be affected, either positively 1997). Furthermore, plant interactions with one partner or via linkage, or negatively via trade-offs. Furthermore, because guild can also affect relationships with other groups or guilds plants interact with both mutualists simultaneously the presence (Armbruster, 1997) and alter outcomes from mutualistic to of one mutualist may increase or decrease presence of the antagonistic (Strauss, 1997; Strauss et al., 1999; Herrera, 2000; other. Strauss and Irwin, 2004; Del-Claro et al., 2016). As a result, a Even in those species that do not castrate their host, growing number of studies are focusing on multispecies and ants’ aggressive behaviors might threaten and deter pollinators, multitrophic interactions (Melián et al., 2009; Fontaine et al., compromising plant reproduction (Ness, 2006; Assunção et al., 2011; Nahas et al., 2012; Pineda et al., 2013; Dáttilo et al., 2014; LeVan et al., 2014). Avoidance of such direct conflict has 2016). It might be expected, for example, that the presence of been suggested to explain plant architecture or behaviors that predatory ants can influence pollinators, with top-down effects reduce spatial (Raine et al., 2002; Malé et al., 2015; Martínez- on plant fitness. This makes ant-plants, which rely on ants for Bauer et al., 2015) or temporal overlap of ant guards and defense against herbivores and on pollinators for seed set, a pollinators (Gaume and Mckey, 1999; Gaume et al., 2005; Nicklen model tritrophic system in which to explore the dynamics of and Wagner, 2006; Ohm and Miller, 2014; Malé et al., 2015), multispecies and multitrophic interactions. and the presence of ant-repelling compounds which exclude ants Here, we focus on disentangling ant-pollinator interactions from flowers when pollen is released (Junker et al., 2007; Willmer that occur when both mutualists share a host plant. Previous et al., 2009; Ballantyne and Willmer, 2012). work has revealed evidence of ant-pollinator conflict in such Extrafloral nectar is a key resource mediating multispecies systems (Yu and Pierce, 1998; Stanton et al.,
Recommended publications
  • Dynamics of Salticid-Ant Mimicry Systems
    ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation.
    [Show full text]
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • 1 KEY to the DESERT ANTS of CALIFORNIA. James Des Lauriers
    KEY TO THE DESERT ANTS OF CALIFORNIA. James des Lauriers Dept Biology, Chaffey College, Alta Loma, CA [email protected] 15 Apr 2011 Snelling and George (1979) surveyed the Mojave and Colorado Deserts including the southern ends of the Owen’s Valley and Death Valley. They excluded the Pinyon/Juniper woodlands and higher elevation plant communities. I have included the same geographical region but also the ants that occur at higher elevations in the desert mountains including the Chuckwalla, Granites, Providence, New York and Clark ranges. Snelling, R and C. George, 1979. The Taxonomy, Distribution and Ecology of California Desert Ants. Report to Calif. Desert Plan Program. Bureau of Land Mgmt. Their keys are substantially modified in the light of more recent literature. Some of the keys include species whose ranges are not known to extend into the deserts. Names of species known to occur in the Mojave or Colorado deserts are colored red. I would appreciate being informed if you find errors or can suggest changes or additions. Key to the Subfamilies. WORKERS AND FEMALES. 1a. Petiole two-segmented. ……………………………………………………………………………………………………………………………………………..2 b. Petiole one-segmented. ……………………………………………………………………………………………………………………………………..………..4 2a. Frontal carinae narrow, not expanded laterally, antennal sockets fully exposed in frontal view. ……………………………….3 b. Frontal carinae expanded laterally, antennal sockets partially or fully covered in frontal view. …………… Myrmicinae, p 4 3a. Eye very large and covering much of side of head, consisting of hundreds of ommatidia; thorax of female with flight sclerites. ………………………………………………………………………………………………………………………………….…. Pseudomyrmecinae, p 2 b. Eye absent or vestigial and consist of a single ommatidium; thorax of female without flight sclerites.
    [Show full text]
  • First Record of a Florida Population of the Neotropical Carpenter Ant Camponotus Novogranadensis (Hymenoptera: Formicidae) Author(S): Mark Deyrup and Robert A
    First Record of a Florida Population of the Neotropical Carpenter Ant Camponotus novogranadensis (Hymenoptera: Formicidae) Author(s): Mark Deyrup and Robert A. Belmont Source: Florida Entomologist, 96(1):283-285. 2013. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.096.0148 URL: http://www.bioone.org/doi/full/10.1653/024.096.0148 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Scientific Notes 283 FIRST RECORD OF A FLORIDA POPULATION OF THE NEOTROPICAL CARPENTER ANT CAMPONOTUS NOVOGRANADENSIS (HYMENOPTERA: FORMICIDAE) MARK DEYRUP1,* AND ROBERT A. BELMONT2 1Archbold Biological Station, 123 Main Drive, Venus, FL 33960 2Massey Services, Inc., 3210 Clay Ave., Suite C, Orlando, FL 32804 *Corresponding author; E-mail: [email protected] Florida specimens of Camponotus novo- granadensis Mayr were first collected by Shawn Hole in May, 2012, in a residential development adjacent to Koreshan State Park in Estero, Lee County.
    [Show full text]
  • Download Download
    Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Selenium in Ant Communities: Implications of Contamination on Ecosystem Ecology, Diversity, and Invasive Potential Permalink https://escholarship.org/uc/item/4b296412 Author De La Riva, Deborah Grace Publication Date 2016 Supplemental Material https://escholarship.org/uc/item/4b296412#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Selenium in Ant Communities: Implications of Contamination on Ecosystem Ecology, Diversity and Invasive Potential A Dissertation submitted in partial satisfaction of the requirements of the degree of Doctor of Philosophy in Entomology by Deborah Grace De La Riva June 2016 Dissertation Committee: Dr. John T. Trumble, Chairperson Dr. Ring T. Cardé Dr. Dong-Hwan Choe Copyright by Deborah Grace De La Riva 2016 The Dissertation of Deborah Grace De La Riva is approved: ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgments I would like to first and foremost thank my graduate advisor, Dr. John T. Trumble, for his commitment to my academic success over the past five years. I understand that taking on a graduate student is large investment of time, effort and finances and I greatly appreciate the opportunities provided to me through his leadership. I’m very grateful for the many opportunities I had to travel to professional conferences in order to present my research and network with others in my field. I would also like to thank John for agreeing to send me to the 2012 Ants of the Southwest Course in Portal, AZ. The field collection and identification techniques learned not only assisted with my research, but are also skills that will follow me after I graduate.
    [Show full text]
  • Arthropod Communities in a Selenium-Contaminated Habitat with a Focus on Ant Species*
    Environmental Pollution xxx (2016) 1e8 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Arthropod communities in a selenium-contaminated habitat with a focus on ant species* * Deborah G. De La Riva a, , Kristen R. Hladun a, Beatriz G. Vindiola b, John T. Trumble a a Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA b Department of Environmental Sciences, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA article info abstract Article history: The selenium contamination event that occurred at Kesterson Reservoir (Merced Co., CA) during the 1970 Received 21 June 2016 e80s is a frequently cited example for the negative effects of contamination on wildlife. Despite the Received in revised form importance of arthropods for ecosystem services and functioning, relatively little information is available 9 September 2016 as to the impacts of pollution on arthropod community dynamics. We conducted surveys of the Accepted 15 September 2016 arthropod community present at Kesterson Reservoir to assess the impacts of selenium contamination Available online xxx on arthropod diversity, with a focus on ant species richness, composition and density. Trophic groups were compared to determine which arthropods were potentially receiving the greatest selenium Keywords: Trophic groups exposure. Plant samples were analyzed to determine the selenium content by site and by location within Pollution plant. Soil concentrations varied across the study sites, but not across habitat types. Topsoil contained Disturbance higher levels of selenium compared to core samples. Plants contained similar concentrations of selenium Bioaccumulation in their leaves, stems and flowers, but flowers contained the greatest range of concentrations.
    [Show full text]
  • Spatial and Temporal Occurrence of Beet Armyworm (Lepidoptera: Noctuidae) Moths in Mississippi
    Armyworm Symposium 2002: Adamczyk et al. 229 SPATIAL AND TEMPORAL OCCURRENCE OF BEET ARMYWORM (LEPIDOPTERA: NOCTUIDAE) MOTHS IN MISSISSIPPI J. J. ADAMCZYK, JR.1, M. R. WILLIAMS2, J. T. REED2, D. W. HUBBARD1 AND D. D. HARDEE1 1USDA, ARS, Southern Insect Management Research Unit P.O. Box 346, Stoneville, MS 38776 2Mississippi State University, Department of Entomology and Plant Pathology Clay Lyle Building, Mississippi State, MS 39762 ABSTRACT Throughout 1994-2000, adult beet armyworm, Spodoptera exigua (Hübner) populations were monitored in the delta and hill regions of Mississippi using pheromone traps. Signifi- cant differences in the mean number of moths trapped were found among different geo- graphical areas of the state. A trend was observed where the greatest number of moths was found in the Mississippi Delta, located in the western region of the state. The lowest number of moths was found in the hills located in the eastern region of the state. An annual profile of beet armyworm populations in the western section of the Mississippi Delta also revealed that wide-scale immigration of this pest typically begins at 200 Julian days (mid-July). This date could be used as a benchmark to determine when and if population levels are high enough to have the potential to cause economic damage to crops in the Mississippi Delta. Key Words: Spodoptera, migration, movement RESUMEN A travéz de los años 1994 a 2000, se realizaron un monitoreo de las poblaciones de adultos del gusano trozador de la remolacha, Spodoptera exigua (Hübner) en las regiones de la Delta y las colinas del Estado de Mississippi usando trampas de feronomas.
    [Show full text]
  • Ant Control in the Apiary1 William H
    ENY-169 Ant Control in the Apiary1 William H. Kern2 Ants are one of a beekeeper’s most common pests, both in The Honey and Nectar Stealers the apiary and in the honey house. Florida and the south- Argentine ant—Linepithema humile (formerly Iridomyrmex eastern United States have a large and diverse ant fauna, humilis) with both native and exotic species. The vast majority of ant species have no impact on our bees or us. The few pest ghost ant—Tapinoma melanocephalum (called black- species can cause serious problems. We can divide the ants headed ants in California) into two pest groups, bee and brood eaters and honey and nectar stealers. Some species can cause both problems at white-footed ant—Technomyrmex difficilis times. Pharaoh’s ant—Monomorium pharaonis The Bee and Brood Eaters The most prominent ants that people notice are the black carpenter ant—Camponotus pennsylvanicus carpenter ants. These are some of our largest ants and compact carpenter ant—Camponotus planatus are abundant in both suburban and rural locations. Many Floridians call these bull ants because of their large size. Florida carpenter ants—Camponotus floridanus and C. The eastern or Florida harvester ant, Pogonomyrmex badius, tortuganus is also called the “bull ant,” but they can deliver a wicked sting. Carpenter ants cannot sting, but they do deliver a crazy ant—Paratrechina longicornis slicing bite into which they spray formic acid. There are numerous species in Florida. These ants are omnivorous, crazy ant—Nylanderia bourbonica eating honeydew, nectar, honey, other insects, and carrion. The most widespread and common is the Florida carpenter tawny crazy ant—Nylanderia fulva ant.
    [Show full text]
  • GENERAL HOUSEHOLD PESTS Ants Are Some of the Most Ubiquitous Insects Found in Community Environments. They Thrive Indoors and O
    GENERAL HOUSEHOLD PESTS Ants are some of the most ubiquitous insects found in community environments. They thrive indoors and outdoors, wherever they have access to food and water. Ants outdoors are mostly beneficial, as they act as scavengers and decomposers of organic matter, predators of small insects and seed dispersers of certain plants. However, they can protect and encourage honeydew-producing insects such as mealy bugs, aphids and scales that are feed on landscape or indoor plants, and this often leads to increase in numbers of these pests. A well-known feature of ants is their sociality, which is also found in many of their close relatives within the order Hymenoptera, such as bees and wasps. Ant colonies vary widely with the species, and may consist of less than 100 individuals in small concealed spaces, to millions of individuals in large mounds that cover several square feet in area. Functions within the colony are carried out by specific groups of adult individuals called ‘castes’. Most ant colonies have fertile males called “drones”, one or more fertile females called “queens” and large numbers of sterile, wingless females which function as “workers”. Many ant species exhibit polymorphism, which is the existence of individuals with different appearances (sizes) and functions within the same caste. For example, the worker caste may include “major” and “minor” workers with distinct functions, and “soldiers” that are specially equipped with larger mandibles for defense. Almost all functions in the colony apart from reproduction, such as gathering food, feeding and caring for larvae, defending the colony, building and maintaining nesting areas, are performed by the workers.
    [Show full text]
  • Ants of the Nevada Test Site
    Brigham Young University Science Bulletin, Biological Series Volume 7 Number 3 Article 1 6-1966 Ants of the Nevada Test Site Arthur Charles Cole Jr. Department of Zoology and Entomology, University of Tennesse, Knoxville Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Cole, Arthur Charles Jr. (1966) "Ants of the Nevada Test Site," Brigham Young University Science Bulletin, Biological Series: Vol. 7 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol7/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. COMP, _QOL. LIBRARY JUL 28 i9 66 hARVAKU Brigham Young University UNIVERSITY Science Bulletin ANTS OF THE NEVADA TEST SITE by ARTHUR C. COLE, JR. BIOLOGICAL SERIES — VOLUME VII, NUMBER 3 JUNE 1966 BRIGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Dorald M. Allred, Department of Zoology and Entomology, Brigham Young University, Provo, Utah Associate Editor: Earl M. Christensen, Department of Botany, Brigham Young University, Provo, Utah Members of the Editorial Board: J. V. Beck, Bacteriology C. Lynn Hayward, Zoology W. Derby Laws, Agronomy Howard C. Stutz, Botany Wdlmer W. Tanner, Zoology, Chairman of the Board Stanley Welsh, Botany Ex officio Members: Rudcer H. Walker, Dean, College of Biological and Agricultural Sciences Ernest L.
    [Show full text]