Cloud Computing Principles, Systems and Applications.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Cloud Computing Principles, Systems and Applications.Pdf Computer Communications and Networks Nick Antonopoulos Lee Gillam Editors Cloud Computing Principles, Systems and Applications Second Edition Computer Communications and Networks Series editor A.J. Sammes Centre for Forensic Computing Cranfield University, Shrivenham Campus Swindon, UK The Computer Communications and Networks series is a range of textbooks, monographs and handbooks. It sets out to provide students, researchers, and non- specialists alike with a sure grounding in current knowledge, together with com- prehensible access to the latest developments in computer communications and networking. Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that even the most complex of topics is presented in a lucid and intelligible manner. More information about this series at http://www.springer.com/series/4198 Nick Antonopoulos • Lee Gillam Editors Cloud Computing Principles, Systems and Applications Second Edition 123 Editors Nick Antonopoulos Lee Gillam University of Derby University of Surrey Derby, Derbyshire, UK Guildford, Surrey, UK ISSN 1617-7975 ISSN 2197-8433 (electronic) Computer Communications and Networks ISBN 978-3-319-54644-5 ISBN 978-3-319-54645-2 (eBook) DOI 10.1007/978-3-319-54645-2 Library of Congress Control Number: 2017942811 1st edition: © Springer-Verlag London Limited 2010 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Foreword Since the first version of this book was published in 2010, with a foreword by my colleague Mark Baker (University of Reading), considerable developments have taken place in Cloud computing. Today, Cloud computing is no longer a niche research area but now closely embedded in our everyday computing environment. This is the ultimate success of a technology, which initially starts out as a specialist domain-specific interest, but becomes so successful that it becomes invisible to us as users. Systems such as Dropbox, Apple iCloud, Microsoft Office 365 and Google Drive (amongst many others) are now regularly made use of and considered very much a core fabric of our computing infrastructure. Social media platforms such as Facebook, Twitter and Instagram all make use of Cloud systems and make use of novel concepts such as “eventual consistency” (amongst others) as part of their implementation. A mobile app that does not make use of a Cloud-based back end is now an anomaly rather than a norm, a considerable change that has taken place since 2010. Early scientific Cloud systems, such as Eucalyptus, Open Cirrus, etc., once considered the domain of computer science research, are now regularly used within a variety of other communities, from biological sciences to arts and humanities. Figure 1 shows change in interest (via Google trends) for the three terms “Cloud computing” (dashed line, descending), “Internet of Things” (dashed line, slowly ascending) and “big data” (dotted line) since the first edition of this book was published in 2010. These three trends are closely related, as many applications that generate or process large data sizes make use of Cloud-based infrastructure. Similarly, many IoT devices act as data generators or consumers. It is also interesting to see that programming models such as MapReduce, featured in the 2010 book, also appear in this version of the book but with a specific focus on a dynamic Cloud computing environment. This programming model has now been implemented across a variety of systems, from Hadoop (Cloudera, Apache) to in-memory systems such as Apache Spark and Mesos (amongst others). This programming model demonstrates how Cloud computing mechanisms have also transformed data analysis and processing and has found wide-scale adoption in industry and academia. v vi Foreword Fig. 1 Google trends for Cloud computing, Internet of Things and big data With significant commercial interest in Cloud computing due to its transfor- mative impact on industry, the most prominent example of which is Amazon Web Services (AWS), understanding how academic research could complement rather than compete has been difficult. Whereas Cloud computing infrastructure developers (Google Cloud, AWS, Microsoft Azure, Salesforce, etc.) often make use of large-scale data centres with a large pool of servers, specialist energy infrastructure and scalable/configurable networks, the academic community often has limited access to such resources. Better understanding on how academic researchers could respond to specialist challenges that may be commercially risky for commercial vendors has changed since 2010. This book demonstrates many such challenges that have been chosen by the academic community, such as (1) Cloud federation, (2) adaptive and elastic resource allocation and (3) reproducibility supported through Cloud-based systems. Whereas a particular industry vendor would prefer a user to always make use of a single Cloud system, purchasing and acquisition of computational infrastructure may not conform to this model, often requiring a multi-system/Cloud environment. Understanding how commercial Cloud systems could be “bridged” with private in-house systems, how a sudden increase in workload could support “bursting” across multiple Cloud systems and how services which are specialised for deployment over particular types of infrastructure (such as GPUs) need to be integrated with services hosted on other platforms (e.g. analytics or database services only available on a given platform) remains an important challenge. Managing resources and efficient allocation within such a federation remain important academic research challenges, which often complement work being carried out in industry. Foreword vii The significant growth and capability of edge devices, and how these can be combined with Cloud-based data centres, has also seen considerable interest over recent years. In 2010, edge devices generally comprising of sensors were primarily used as mechanism for data capture. With increasing advances in semiconductor technologies, edge devices today have significant processing capability (e.g. the use of Arduino, Raspberry Pi 3, Intel Edison, etc.) enabling data to be preprocessed and sampled at the network edge, prior to being transmitted to a centralised data centre. Another significant trend since 2010 has been the wider adoption and availability of programmable networks through software-defined networks and network function virtualisation technologies. The availability of a more complex capability at the network edge, along with in-network programmability, changes the role of a data centre. This perspective requires researchers to better understand how edge devices and data centres can be used collectively. Understanding what should be done at the network edge vs. in the data centre becomes an important consideration. In 2010, a key requirement was to understand how processing and data could be “offloaded” from a mobile/edge device to a Cloud data centre (to conserve battery power of the edge device and avoid the impact of intermittent network connectivity). Today the focus has shifted to “reverse offloading”, i.e. understanding how processing to be carried out within a Cloud data centre could be shifted to edge devices – to limit large data transfer over a public network and avoid latency due to such transfers. Better and more effective use of edge devices (alongside the use of a data centre) also leads to useful ways of supporting data security (i.e. a user can decide what should remain on the devices vs. what to shift to the data centre). The programming models needed to support this collaborative and opportunistic use of edge devices and data centres remain in short supply at present. Recent availability of low-overhead (in terms of memory/storage requirements and scheduling delay) “container” technologies (such as Docker, Kubernetes, Red Hat OpenShift) also provides useful mechanisms for supporting edge device/Cloud data centre integration, enabling services to be migrated (offloaded) from edge devices to data centres (and vice versa) – Villari et al.1 refer to this as “osmotic computing”. Virtualisation technologies have also seen a considerable
Recommended publications
  • A 1024-Core 70GFLOPS/W Floating Point Manycore Microprocessor
    A 1024-core 70GFLOPS/W Floating Point Manycore Microprocessor Andreas Olofsson, Roman Trogan, Oleg Raikhman Adapteva, Lexington, MA The Past, Present, & Future of Computing SIMD MIMD PE PE PE PE MINI MINI MINI CPU CPU CPU PE PE PE PE MINI MINI MINI CPU CPU CPU PE PE PE PE MINI MINI MINI CPU CPU CPU MINI MINI MINI BIG BIG CPU CPU CPU CPU CPU BIG BIG BIG BIG CPU CPU CPU CPU PAST PRESENT FUTURE 2 Adapteva’s Manycore Architecture C/C++ Programmable Incredibly Scalable 70 GFLOPS/W 3 Routing Architecture 4 E64G400 Specifications (Jan-2012) • 64-Core Microprocessor • 100 GFLOPS performance • 800 MHz Operation • 8GB/sec IO bandwidth • 1.6 TB/sec on chip memory BW • 0.8 TB/sec network on chip BW • 64 Billion Messages/sec IO Pads Core • 2 Watt total chip power • 2MB on chip memory Link Logic • 10 mm2 total silicon area • 324 ball 15x15mm plastic BGA 5 Lab Measurements 80 Energy Efficiency 70 60 50 GFLOPS/W 40 30 20 10 0 0 200 400 600 800 1000 1200 MHz ENERGY EFFICIENCY ENERGY EFFICIENCY (28nm) 6 Epiphany Performance Scaling 16,384 G 4,096 F 1,024 L 256 O 64 4096 P 1024 S 16 256 64 4 16 1 # Cores On‐demand scaling from 0.25W to 64 Watt 7 Hold on...the title said 1024 cores! • We can build it any time! • Waiting for customer • LEGO approach to design • No global timinga paths • Guaranteed by design • Generate any array in 1 day • ~130 mm2 silicon area 1024 Cores 1Core 8 What about 64-bit Floating Point? Single Precision Double Precision 2 FLOPS/CYCLE 2 FLOPS/CYCLE 64KB SRAM 64KB SRAM 0.215mm^2 0.237mm^2 700MHz 600MHz 9 Epiphany Latency Specifications
    [Show full text]
  • Comparison of 116 Open Spec, Hacker Friendly Single Board Computers -- June 2018
    Comparison of 116 Open Spec, Hacker Friendly Single Board Computers -- June 2018 Click on the product names to get more product information. In most cases these links go to LinuxGizmos.com articles with detailed product descriptions plus market analysis. HDMI or DP- USB Product Price ($) Vendor Processor Cores 3D GPU MCU RAM Storage LAN Wireless out ports Expansion OSes 86Duino Zero / Zero Plus 39, 54 DMP Vortex86EX 1x x86 @ 300MHz no no2 128MB no3 Fast no4 no5 1 headers Linux Opt. 4GB eMMC; A20-OLinuXino-Lime2 53 or 65 Olimex Allwinner A20 2x A7 @ 1GHz Mali-400 no 1GB Fast no yes 3 other Linux, Android SATA A20-OLinuXino-Micro 65 or 77 Olimex Allwinner A20 2x A7 @ 1GHz Mali-400 no 1GB opt. 4GB NAND Fast no yes 3 other Linux, Android Debian Linux A33-OLinuXino 42 or 52 Olimex Allwinner A33 4x A7 @ 1.2GHz Mali-400 no 1GB opt. 4GB NAND no no no 1 dual 40-pin 3.4.39, Android 4.4 4GB (opt. 16GB A64-OLinuXino 47 to 88 Olimex Allwinner A64 4x A53 @ 1.2GHz Mali-400 MP2 no 1GB GbE WiFi, BT yes 1 40-pin custom Linux eMMC) Banana Pi BPI-M2 Berry 36 SinoVoip Allwinner V40 4x A7 Mali-400 MP2 no 1GB SATA GbE WiFi, BT yes 4 Pi 40 Linux, Android 8GB eMMC (opt. up Banana Pi BPI-M2 Magic 21 SinoVoip Allwinner A33 4x A7 Mali-400 MP2 no 512MB no Wifi, BT no 2 Pi 40 Linux, Android to 64GB) 8GB to 64GB eMMC; Banana Pi BPI-M2 Ultra 56 SinoVoip Allwinner R40 4x A7 Mali-400 MP2 no 2GB GbE WiFi, BT yes 4 Pi 40 Linux, Android SATA Banana Pi BPI-M2 Zero 21 SinoVoip Allwinner H2+ 4x A7 @ 1.2GHz Mali-400 MP2 no 512MB no no WiFi, BT yes 1 Pi 40 Linux, Android Banana
    [Show full text]
  • Survey and Benchmarking of Machine Learning Accelerators
    1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.
    [Show full text]
  • Novel Memory and I/O Virtualization Techniques for Next Generation Data-Centers Based on Disaggregated Hardware Maciej Bielski
    Novel memory and I/O virtualization techniques for next generation data-centers based on disaggregated hardware Maciej Bielski To cite this version: Maciej Bielski. Novel memory and I/O virtualization techniques for next generation data-centers based on disaggregated hardware. Hardware Architecture [cs.AR]. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLT022. tel-02464021 HAL Id: tel-02464021 https://pastel.archives-ouvertes.fr/tel-02464021 Submitted on 2 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nouvelles techniques de virtualisation de la memoire´ et des entrees-sorties´ vers les periph´ eriques´ pour les prochaines gen´ erations´ de centres de traitement de donnees´ bases´ sur des equipements´ NNT : 2019SACLT022 repartis´ destructur´ es´ These` de doctorat de l’Universite´ Paris-Saclay prepar´ ee´ a` Tel´ ecom´ ParisTech Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la Communication (STIC) Specialit´ e´ de doctorat: Informatique These` present´ ee´ et soutenue a` Biot Sophia Antipolis, le 18/03/2019,
    [Show full text]
  • SPORK: a Summarization Pipeline for Online Repositories of Knowledge
    SPORK: A SUMMARIZATION PIPELINE FOR ONLINE REPOSITORIES OF KNOWLEDGE A Thesis presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Steffen Lyngbaek June 2013 c 2013 Steffen Lyngbaek ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: SPORK: A Summarization Pipeline for Online Repositories of Knowledge AUTHOR: Steffen Lyngbaek DATE SUBMITTED: June 2013 COMMITTEE CHAIR: Professor Alexander Dekhtyar, Ph.D., De- parment of Computer Science COMMITTEE MEMBER: Professor Franz Kurfess, Ph.D., Depar- ment of Computer Science COMMITTEE MEMBER: Professor Foaad Khosmood, Ph.D., Depar- ment of Computer Science iii Abstract SPORK: A Summarization Pipeline for Online Repositories of Knowledge Steffen Lyngbaek The web 2.0 era has ushered an unprecedented amount of interactivity on the Internet resulting in a flood of user-generated content. This content is of- ten unstructured and comes in the form of blog posts and comment discussions. Users can no longer keep up with the amount of content available, which causes developers to start relying on natural language techniques to help mitigate the problem. Although many natural language processing techniques have been em- ployed for years, automatic text summarization, in particular, has recently gained traction. This research proposes a graph-based, extractive text summarization system called SPORK (Summarization Pipeline for Online Repositories of Knowl- edge). The goal of SPORK is to be able to identify important key topics presented in multi-document texts, such as online comment threads. While most other automatic summarization systems simply focus on finding the top sentences rep- resented in the text, SPORK separates the text into clusters, and identifies dif- ferent topics and opinions presented in the text.
    [Show full text]
  • Master's Thesis: Adaptive Core Assignment for Adapteva Epiphany
    Adaptive core assignment for Adapteva Epiphany Master of Science Thesis in Embedded Electronic System Design Erik Alveflo Chalmers University of Technology Department of Computer Science and Engineering G¨oteborg, Sweden 2015 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial pur- pose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other mate- rial that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Adaptive core assignment for Adapteva Epiphany Erik Alveflo, c Erik Alveflo, 2015. Examiner: Per Larsson-Edefors Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 G¨oteborg Sweden Telephone + 46 (0)31-772 1000 Department of Computer Science and Engineering G¨oteborg, Sweden 2015 Adaptive core assignment for Adapteva Epiphany Erik Alveflo Department of Computer Science and Engineering Chalmers University of Technology Abstract The number of cores in many-core processors is ever increasing, and so is the number of defects due to manufacturing variations and wear-out mechanisms.
    [Show full text]
  • Program & Exhibits Guide
    FROM CHIPS TO SYSTEMS – LEARN TODAY, CREATE TOMORROW CONFERENCE PROGRAM & EXHIBITS GUIDE JUNE 24-28, 2018 | SAN FRANCISCO, CA | MOSCONE CENTER WEST Mark You Calendar! DAC IS IN LAS VEGAS IN 2019! MACHINE IP LEARNING ESS & AUTO DESIGN SECURITY EDA IoT FROM CHIPS TO SYSTEMS – LEARN TODAY, CREATE TOMORROW JUNE 2-6, 2019 LAS VEGAS CONVENTION CENTER LAS VEGAS, NV DAC.COM DAC.COM #55DAC GET THE DAC APP! Fusion Technology Transforms DOWNLOAD FOR FREE! the RTL-to-GDSII Flow GET THE LATEST INFORMATION • Fusion of Best-in-Class Optimization and Industry-golden Signoff Tools RIGHT WHEN YOU NEED IT. • Unique Fusion Data Model for Both Logical and Physical Representation DAC.COM • Best Full-flow Quality-of-Results and Fastest Time-to-Results MONDAY SPECIAL EVENT: RTL-to-GDSII Fusion Technology • Search the Lunch at the Marriott Technical Program • Find Exhibitors www.synopsys.com/fusion • Create Your Personalized Schedule Visit DAC.com for more details and to download the FREE app! GENERAL CHAIR’S WELCOME Dear Colleagues, be able to visit over 175 exhibitors and our popular DAC Welcome to the 55th Design Automation Pavilion. #55DAC’s exhibition halls bring attendees several Conference! new areas/activities: It is great to have you join us in San • Design Infrastructure Alley is for professionals Francisco, one of the most beautiful who manage the HW and SW products and services cities in the world and now an information required by design teams. It houses a dedicated technology capital (it’s also the city that Design-on-Cloud Pavilion featuring presentations my son is named after).
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Despliegue de Liota (Little IoT Agent) en Raspberry Pi AUTOR: Ricardo Amador Pérez TITULACIÓN: Ingeniería Telemática TUTOR (o Director en su caso): Antonio da Silva Fariña DEPARTAMENTO: Departamento de Ingeniería Telemática y Electrónica VºBº Miembros del Tribunal Calificador: PRESIDENTE: David Luengo García VOCAL: Antonio da Silva Fariña SECRETARIO: Ana Belén García Hernando Fecha de lectura: Calificación: El Secretario, Despliegue de Liota (Little IoT Agent) en Raspberry Pi Quizás de todas las líneas que he escrito para este proyecto, estas sean a la vez las más fáciles y las más difíciles de todas. Fáciles porque podría doblar la longitud de este proyecto solo agradeciendo a mis padres la infinita paciencia que han tenido conmigo, el apoyo que me han dado siempre, y el esfuerzo que han hecho para que estas líneas se hagan realidad. Por todo ello y mil cosas más, gracias. Mamá, papá, lo he conseguido. Fáciles porque sin mi tutor Antonio, este proyecto tampoco sería una realidad, no solo por su propia labor de tutor, si no porque literalmente sin su ayuda no se hubiera entregado a tiempo y funcionando. Después de esto Antonio, voy a tener que dejarme ganar algún combate en kenpo como agradecimiento. Fáciles porque, sí melones os toca a vosotros, Alex, Alfonso, Manu, Sama, habéis sido mi apoyo más grande en los momentos más difíciles y oscuros, y mis mejores compañeros en los momentos de felicidad. Amigos de Kulturales, los hermanos Baños por empujarme a mejorar, Pablo por ser un ejemplo a seguir, Chou, por ser de los mejores profesores y amigos que he tenido jamás.
    [Show full text]
  • Experiences Using Tegra K1 and X1 for Highly Energy Efficient Computing
    Experiences Using Tegra K1 and X1 for Highly Energy Efficient Computing Gaurav Mitra Andrew Haigh Luke Angove Anish Varghese Eric McCreath Alistair P. Rendell Research School of Computer Science Australian National University Canberra, Australia April 07, 2016 Introduction & Background Overview 1 Introduction & Background 2 Power Measurement Environment 3 Experimental Platforms 4 Approach 5 Results & Analysis 6 Conclusion Mitra et. al. (ANU) GTC 2016, San Francisco April 07, 2016 2 / 20 Introduction & Background Use of low-powered SoCs for HPC Nvidia Jetson TK1: ARM + GPU SoC Nvidia Jetson TX1: ARM + GPU SoC TI Keystone II: ARM + DSP SoC Adapteva Parallella: ARM + 64-core NoC TI BeagleBoard: ARM + DSP SoC Terasic DE1: ARM + FPGA SoC Rockchip Firefly: ARM + GPU SoC Freescale Wandboard: ARM + GPU SoC Cubieboard4: ARM + GPU SoC http://cs.anu.edu.au/systems Mitra et. al. (ANU) GTC 2016, San Francisco April 07, 2016 3 / 20 Introduction & Background Use of low-powered SoCs for HPC In order for SoC processors to be considered viable exascale building blocks, important factors to explore include: Absolute performance Balancing use of different on-chip devices Understanding the performance-energy trade-off Mitra et. al. (ANU) GTC 2016, San Francisco April 07, 2016 4 / 20 Introduction & Background Contributions Environment for monitoring and collecting high resolution power measurements for SoC systems Understanding the benefits of exploiting both the host CPU and accelerator GPU cores simultaneously for critical HPC kernels Performance and energy comparisons
    [Show full text]
  • Analysis of Wasted Computing Resources in Data Centers in Terms of CPU, RAM And
    Review Article iMedPub Journals American Journal of Computer Science and 2020 http://www.imedpub.com Engineering Survey Vol. 8 No.2:8 DOI: 10.36648/computer-science-engineering-survey.08.02.08. Analysis of Wasted Computing Resources in Robert Method Karamagi1* 2 Data Centers in terms of CPU, RAM and HDD and Said Ally Abstract 1Department of Information & Despite the vast benefits offered by the data center computing systems, the Communication Technology, The Open University of Tanzania, Dar es salaam, efficient analysis of the wasted computing resources is vital. In this paper we shall Tanzania analyze the amount of wasted computing resources in terms of CPU, RAM and HDD. Keywords: Virtualization; CPU: Central Processing Unit; RAM: Random Access 2Department of Science, Technology Memory; HDD: Hard Disk Drive. and Environmental Studies, The Open University of Tanzania, Dar es salaam, Tanzania Received: September 16, 2020; Accepted: September 30, 2020; Published: October 07, 2020 *Corresponding author: Robert Method Introduction Karamagi, Department of Information & A data center contains tens of thousands of server machines Communication Technology, The Open located in a single warehouse to reduce operational and University of Tanzania, Dar es salaam, capital costs. Within a single data center modern application Tanzania, E-mail: robertokaramagi@gmail. are typically deployed over multiple servers to cope with their com resource requirements. The task of allocating resources to applications is referred to as resource management. In particular, resource management aims at allocating cloud resources in a Citation: Karamagi RM, Ally S (2020) Analysis way to align with application performance requirements and to of Wasted Computing Resources in Data reduce the operational cost of the hosted data center.
    [Show full text]
  • AI-Optimized Chipsets
    AI-Optimized Chipsets Part III: Key Opportunities & Trends Aug 2018 An Introduction Previously in Part I, we reviewed the ADAC loop and key factors driving innovation for AI- optimized chipsets. In Part II, we review the shift in performance focus computing from general application neural nets and how this is driving demand for high performance computing. To this end, some startups are adopting alternative, novel approaches and this is expected to pave the way for other AI-optimized chipsets. In this instalment, we review the training and inference chipset markets, assess the dominance of tech giants, as well as the startups adopting cloud-first or edge-first approaches to AI-optimized chipsets. The training chipset market is dominated by 5 firms, while the inference chipset market is more diverse with >40 players Training Chipsets Inference Chipsets No. of Companies • 5 (i.e. Nvidia, Intel, Xilinx, AMD, Google) • > 40 Differentiators • Computation Performance • Power Efficiency • Usability • System Latency • Innovation Road Map • Cost • Computation Performance Barriers to Entry • R&D Intensity • Manufacturing Scale Economies • Developer Support • High Switching Costs (End User) • Size of End Markets • Regulatory Requirements • Distribution ASP • USD 2,000 - USD 20,000 • USD 80 - USD 10,000 Source: UBS • The training chipset market is dominated by 5 firms which have developed massively parallel architectures, well-suited for deep learning algorithms. NVIDIA is the most prominent with its GPU technology stack. • The early leaders in this market are likely to maintain their lead, but the inference market is large and easily accessible to all, including tech giants and startups. Given the significant market for inference chipsets, many defensible market niches based on high-system speed, low power and/or low Total Cost of Ownership (TCO) products are likely to emerge.
    [Show full text]
  • November 2–5, 2014 Asilomar Hotel and Conference Grounds
    Monterey, CA 93943 CA Monterey, 8236 Box P.O. Corp. SS&C Conf. FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS November 2–5, 2014 Asilomar Hotel and Conference Grounds Technical Co-sponsor FORTY-EIGHTH Welcome from the General Chairman ASILOMAR CONFERENCE ON Prof. Roger Woods SIGNALS, SYSTEMS & COMPUTERS Queen’s University Belfast, UK Welcome to the 48th Asilomar Conference on Signals, Systems, and Computers! I have had a long involvement with the Conference since my first publication in 1997 when I was immediately struck by the unique nature of the Asilomar conference environment. The picturesque sand dunes and warm sunshine provide a wonderful backdrop to a conference that allows easy access to, and Technical Co-sponsor interaction with key researchers. Understandably, over the years, I have needed little persuasion to attend. There will never be a better opportunity to capture the attention of a key researcher in your area IEEE SIGNAL PROCESSING SOCIETY of expertise than at Asilomar! The technical program was crafted expertly by the Technical Program Chair, Geert Leus, and his team of Technical Area Chairs: Shengli Zhou, Zhengdao Wang, Bhaskar Rao, Michael Rabbat, Zhi Tian, Visa Koivunen, Selin Aviyente, Jorn Janneck, Mohsin Jamali, and Matt McKay. I would like to thank Geert and his team for assembling a high quality program with 439 accepted papers and 164 invited papers. The student paper contest this year has been chaired by Joe Cavallaro and he has selected a total of 11 CONFERENCE COMMITTEE submissions. The student finalists will present poster presentations to the judges on Sunday afternoon and of course, everyone is General Chair Publicity Chair welcome to attend.
    [Show full text]