Articles in the Central North Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Articles in the Central North Pacific Ocean Plastic Pollution FAQs 1. What are the alternatives to single-use or throwaway plastics? To truly tackle the plastics epidemic, companies need to fundamentally rethink how they bring products to people. That could include refill and reuse systems, plastic-free packaging, a combination of approaches or totally new delivery and provisioning systems — but the time has come to stop using throwaway plastic for good. There are plastic alternatives that are becoming more prevalent around the world, but to bring about change at the scale needed, corporations are going to have to innovate as only they can afford to do. 2. Are glass and aluminum better options than single-use plastic bottles? We would like to see companies innovate beyond current products to come up with alternative delivery systems. Single-use glass and aluminum products may have a place in a more sustainable system, but they are still based on a throwaway model that we must change. While the environmental impact may be lower, they also remain in our oceans and the environment for years. It’s time for companies to do better for their customers. 3. It’s not “single use” if the plastics are recycled, right? Recycled or recyclable throwaway plastics are still single-use. Single-use plastics are always going to be throwaway plastics, regardless of whether a company is able to recycle a percentage of them. We know that over 90 percent of the plastic waste produced has not been recycled and eventually a proportion of that packaging will end up polluting our environment. Companies can try to spin their recycling efforts as making the difference for our oceans and waterways, but they’re actually just dodging true accountability for the crisis they helped to create. Real leadership means reducing the throwaway plastics they produce and sell. 4. Why can’t recycling be the answer for the continued use of plastics? Over 90 percent of the plastics produced have not been recycled and without much tighter standards and controls on the quality, sorting, and destination of plastics there is a very high risk of downcycling (downcycling means the material is of lower quality and/or functionality than the original material and further recycling is not easily possible). We know that the scale and volume of the plastics crisis prevents us from simply recycling our way to a better future. Recycling has been sold as the solution to throwaway plastic for years, but we know that it will simply never be enough on its own. As recycling is unlikely to be able to absorb the existing and expected future growth in plastics produced, efforts to transform plastic recycling should be seen as a complement to the large-scale transformation of production and consumption of plastic. As a priority, we call for investment in solutions that aim at reduction, in particular for reuse, repair, and new delivery and return systems. However, in the transition to much less (throwaway) plastic, replacing virgin plastic with recycled (and recyclable) plastic can have an important but limited role in addressing plastic overproduction. 5. Isn’t it the consumer’s problem to deal with recycling plastic? Why target a corporation? Corporations have tried to put the onus on consumers to deal with the plastic epidemic, but people worldwide are recognizing that the majority of single-use plastics are not recycled or recyclable, therefore it is up to the companies that produce this waste to come up with a better system. The individual consumer can certainly make informed decisions about what they buy, but companies must do better if they want to maintain customer loyalty. People won’t tolerate a company that turns a blind eye to the plastic pollution plaguing our waterways and oceans. 6. Companies are reducing their virgin plastic content or fossil-plastic content in bottles — isn’t that enough? No, it is not enough to simply cut down on the amount of fossil or virgin plastic used or add more recycled content at this point. We know that over 90 percent of plastics produced have not ever recycled. Coke, for example, has continued to increase its investment in throwaway plastic bottles. This problem is so massive, that it requires massive shifts, not baby steps in the right direction. For Coke to only commit to recycling efforts for its 110 billion single-use plastic bottles still leaves us with many billions of plastic bottles to pollute our waterways and oceans. 7. What about bioplastics? Aren’t companies like Coke already using them? There are many kinds of bioplastics, so each case needs evaluation but generally we believe they should be considered with caution. Bioplastics do not help us to challenge our current throwaway society or move up the waste hierarchy to give priority to prevention and reduction, as bioplastics are mostly designed to substitute petroleum-based plastics and often disposable or single-use products. Greenpeace also has concerns that bioplastics resourced from intensive conventional agriculture do not support the shift toward ecological agriculture. Simply replacing conventional plastics with bioplastics, including those purporting to be biodegradable, would not offer a sustainable solution to land or marine pollution and can actually increase the tendency for people to litter. 8. Isn’t it unrealistic to think we can phase out all single-use plastic? We have lived in a world free of single-use plastics before, and we can again. It will take time and investment to phase out all throwaway plastics, but it is time for companies to move toward that goal. New materials and delivery systems are emerging all the time that will make this transition easier. Reduction and ultimately the phasing out of single-use plastics is the only answer to our ocean plastics crisis. 9. Can’t we just remove the plastic bottles that wash up on shore or float in the ocean? It’s not as simple as just removing the plastics that we can see. It’s estimated that 94% of the plastic that enters the ocean ends up on the seafloor. Barely 1% of marine plastics are found floating at or near the ocean surface and 5% end up on beaches. A single plastic bottle can fragment to pollute our oceans with thousands of pieces of microplastic, which are ingested by marine life and enter our food supply. Simply removing plastics from beaches and the ocean will never tackle the scale of the problem we are facing. The only way to deal with this pollution crisis is to stop single-use plastic production at the source. (This is why we recommend that any beach cleanup should also include a brand audit to identify the corporations responsible for ocean pollution.) 10. What do brand audits entail and will they be ongoing? Brand audits are being conducted worldwide to identify the companies responsible for the plastic pollution found on our beaches and in our waterways and oceans. It’s no longer enough to remove this pollution without holding the corporate polluters accountable. We will continue to conduct brand audits until throwaway plastics are phased out by the companies producing them. 11. Does plastic ever biodegrade? It depends on the plastic, but most petroleum plastic does not biodegrade — it just fragments. Many bioplastics only biodegrade under very controlled conditions, and very poorly or not at all in the sea. Plastics fragment into tiny pieces of microplastic, which is often ingested by marine life before entering our food supply chain. We will never be able to recycle or even compost our way out of this mess — it’s time to stop producing throwaway plastics. 12. Is incineration a solution? No. It produces climate impacting greenhouse gases, persistent pollutants (that can accumulate in land and marine food chains), and can inflict air and ash pollution impacts on local communities. Burning enables poorly designed products to continue being produced, wasting valuable resources that would be better reused or recycled. Source: http://www.no-burn.org/burning-plastic-incineration-causes-air- pollution-dioxin-emissions-cost-overruns/ 13. Is chemical recycling a solution? No. To date, despite considerable investment, chemical recycling is expensive, inefficient, and the full impacts of the systems developed so far are not transparent (but depends on potentially highly polluting processes). They risk being a theoretical solution that could enable producers and retailers to claim that non-reusable and unrecyclable plastics are in fact ‘technically’ recyclable. Instead of focusing on solutions that protect business as usual, companies need to make significant investments in finding alternative ways to bring their products to people. And while recycling has a limited but important role to play in the short-term, to solve the plastic pollution and overproduction crises we need to create less single-use plastic in the first place. Plastics that are not easily and simply reused or mechanically recyclable should be eliminated, full stop. 14. Won’t action on single-use plastics, especially straws, make things more challenging for disabled people? Here is a blog that speaks to this: https://www.greenpeace.org.uk/guest- blog-one-in-five/ 15. Which countries are the biggest polluters? Waste estimates for 2010 for the top 20 countries ranked by mass of mismanaged plastic waste according to the journal Science: 1. China 2. Indonesia 3. Philippines 4. Vietnam 5. Sri Lanka 6. Thailand 7. Egypt 8. Malaysia 9. Nigeria 10. Bangladesh 11. South Africa 12. India 13. Algeria 14.Turkey 15. Pakistan 16. Brazil 17. Burma 18. Morocco 19. North Korea 20. United States Source: https://www.iswa.org/fileadmin/user_upload/Calendar_2011_03_AM ERICANA/Science-2015-Jambeck-768-71__2_.pdf 16. What is the Plastic trash vortex, also called the Great Pacific garbage patch? The Great Pacific garbage patch, also called the Pacific trash vortex, is a gyre of marine debris particles in the central North Pacific Ocean.
Recommended publications
  • Five Principles of Waste Product Redesign Under the Upcycling Concept
    International Forum on Energy, Environment Science and Materials (IFEESM 2015) Five Principles of Waste Product Redesign under the Upcycling Concept Jiang XU1 & Ping GU1 1School of Design, Jiangnan University, Wuxi, China KEYWORD: Upcycling; Redesign principle; Green design; Industrial design; Product design ABSTRACT: It explores and constructs the principles of waste product redesign which are based on the concept of upcycling. It clarifies the basic concept of upcycling, briefly describes its current development, deeply discusses its value and significance, combines with the idea of upcycling which behinds regeneration design principle from the concept of “4R” of green design, and takes real-life case as example to analyze the principles of waste product redesign. It puts forward five principles of waste product redesign: value enhancement, make the most use of waste, durable and environmental protection, cost control and populace's aesthetic. INTRODUCTION Recently, environmental problems was becoming worse and worse, while as a developing country, China is facing dual pressures that economical development and environmental protection. However, large numbers of goods become waste every day all over the world, but the traditional recycling ways, such as melting down and restructuring, not only produce much CO2, but also those restruc- tured parts or products cannot mention in the same breath with raw ones. As a result, the western countries started to center their attention to the concept of “upcycling” of green design, which can transfer the old and waste things into more valuable products to vigorously develop the green econ- omy. Nevertheless, this new concept hasn’t been well known and the old notion of traditionally inef- ficient reuse still predominant in China, so it should be beneficial for our social development to con- struct the principles of waste products’ redesign which are based on the concept of upcycling.
    [Show full text]
  • End-Of-Life Modelling
    Best Practice LCA: End-of-Life Modelling October 28, 2014 Agenda 1. Modelling EoL in LCA 2. Recycled content approach 3. Avoided burden approach 4. Value-corrected substitution 5. PE’s recommendations 6. Current PEF discussions 2 Modelling EoL in LCA 3 Modelling EoL in LCA General challenge • “Allocation” is commonly used to assign burdens associated with the upstream supply chain to each product of multi-output processes. • EoL modelling gives rise to a similar problem due to its multi-functionality – treat waste and produce valuable products (material and/or energy) • Focus on how the burden of virgin material production and the burden of EoL treatment be allocated between the first application in one product system and its subsequent application in the same or another product system. • Chosen allocation approach will affect modelling of other EoL pathways as well (e.g., landfill). 4 Modelling EoL in LCA Most common approaches • Recycled content approach (a.k.a. cut-off, 100/0) • Avoided burden approach (a.k.a. End-of-Life recycling, 0/100) • Value-Corrected Substitution 5 Recycled content approach 6 Recycled content approach General description • Scrap inputs to the product system are modelled as being free of any primary material burden (all assigned to the first life cycle). • The recycling of scrap generated by the product system is not part of the product system and the system boundary is drawn at the point of scrap generation. No credits for subsequent recycling. • When modelling other disposal processes (e.g., incineration with energy recovery, landfill with landfill gas capture), burdens are included, but no credits should be given for energy recovery.
    [Show full text]
  • Subject Index
    Index 2-opt 287, 288, 291, 293 arc 18, 19, 240–242, 260, 280–284, 335, 368, 369 architecture 45, 58, 61, 65, 68, 74, 75, 77, A 93, 103, 236, 274, 277, 375, 376, 422 as-good-as-new 458, 460, 462 a priori data 267, 270, 271, 273, 297, 305 assembly 25, 26, 48, 49, 55, 58, 64, 73, 74, absolute technical importance rating 84, 86, 101, 118, 229–231, 237, 239, 243, (ATIR) 131, 133–135 245, 249, 250, 256, 259, 278, 306–309, abundance 20, 218 312, 313, 316, 328, 329, 332–339, 343, accumulation 20–22, 282, 426 351, 356–361, 365, 371, 391, 416, 423, activity modeling 45, 46 424, 474, 510 actor 9, 41, 42, 54, 56, 82, 114 assembly line balancing 239, 256, 259, acquisition 93, 102, 103, 225, 232, 234, 278, 306–309, 343 291, 385, 445, 446, 449, 452, 453, 455, asset management 459, 496, 497 457, 458, 461–465, 466, 510 attitude 3, 139, 140, 219, 223, 237, 455, 457, adaptability 347, 415, 430 458, 466, 524 adaptation 16, 62, 64, 66, 67, 69, 102, 356, automotive 222, 388–391, 411, 446, 449, 368, 392, 408, 422, 442 456–458, 466, 468, 474 adaptive disassembly process planning autonomous barrier 521 363, 375 adaptive kanban 314, 329 adaptive learning 375, 378, 379 B adjacent element hill climbing (AEHC) 236, 238, 240, 242, 274, 285, 287–290 backlog cost 477, 483 after-sale product condition Basel Action Network (BAN) 500, 506 monitoring 92 Basel convention 498, 499, 501, 503 aggregation 2, 11, 16–18 Bayesian forecasting 223, 224 analytic hierarchy process (AHP) 105, Bayesian updating 105, 110, 124–129, 212 110, 115–118, 197, 205, 212, 214 beginning of life
    [Show full text]
  • A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward
    Venice Italy Apr 13-14, 2015, 17 (4) Part I A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward Kyungeun Sung related books have been published since 1999.1 Most books Abstract—Upcycling is a process in which used materials are (96%; 115 out of 120 books) in the sample were published converted into something of higher value and/or quality in their between 2008 and 2014 with higher publication rate between second life. It has been increasingly recognised as one promising 2012 and 2014 as 62.5% of all samples (75 books between means to reduce material and energy use, and to engender sustainable 2012 and 2014; 21 books in 2012; 28 in 2013; and 26 in production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from 2014). 53% (64/120) of the sampled books are categorised as numerous researchers and business practitioners in recent years. This ‘craft and hobbies’ whereas the other book categories show has been seen in the growing number of publications on this topic similar percentages (art & design: 10%; house & home DIY: since the 1990s. However, the overall volume of literature dealing 10%; science & technology: 9%; business & economics: 8%; with upcycling is still low and no major review has been presented. and the rest as miscellaneous).2 The theses search on Google Therefore, in order to further establish this field, this paper analyses Scholar simultaneously conducted by the author showed a and summarises the current body of literature on upcycling, focusing similar recent surge of publication: 90% (37/41) of these in the on different definitions, trends in practices, benefits, drawbacks and 3 barriers in a number of subject areas, and gives suggestions for future sample (since 2001) were published between 2009 and 2014.
    [Show full text]
  • Sorting of Automotive Manufacturing Wrought Aluminum Scrap
    Sorting of Automotive Manufacturing Wrought Aluminum Scrap A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree in Bachelor of Science in Mechanical Engineering By Shady J. Zummar Ghazaleh Date: 04/26/2018 Sponsoring Organization: Metal Processing Institute Approved by: ________________________________________ Professor Diran Apelian Alcoa-Howmet Professor of Engineering, Advisor Founding Director of Metal Processing Institute Abstract An increase of 250% in wrought aluminum usage in automotive manufacturing is expected by 2020. Consequently, the generation of new aluminum sheet scrap will also increase. Producing secondary aluminum only emits 5% of the CO2 compared to primary aluminum – a significant 95% decrease. With the advent of opto-electronic sorting technologies, recovery and reuse of new aluminum scrap (generated during manufacturing) is at hand. A series of interviews with industrial experts and visits to automotive stamping plants were performed in order to identify: (i) the most common wrought aluminum alloys from which scrap is generated; (ii) the present scenario — how scrap is collected today; and (iii) the types of contamination that must be accounted for during and after sortation. Recommendations are made herein that will support the development of an optimized scrap management system including sorting criteria that will enable closed loop recycling. 2 Table of Contents Abstract 2 Table of Contents 3 Acknowledgements 5 1 Introduction
    [Show full text]
  • Upgrading Construction and Demolition Waste Management from Downcycling to Recycling in the Netherlands
    Journal of Cleaner Production 266 (2020) 121718 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands * Chunbo Zhang a, Mingming Hu a, b, , Xining Yang a, Brenda Miranda-Xicotencatl a, Benjamin Sprecher a, Francesco Di Maio c, Xiaoyang Zhong a, Arnold Tukker a, d a Institute of Environmental Sciences, Leiden University, 2300, RA, Leiden, Netherlands b School of Management Science and Real Estate, Chongqing University, Chongqing, 40045, China c Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628, CN, Delft, the Netherlands d Netherlands Organization for Applied Scientific Research TNO, 2595, DA, Den Haag, Netherlands article info abstract Article history: Urban mining from construction and demolition waste (CDW) is highly relevant for the circular economy Received 30 April 2019 ambitions of the European Union (EU). Given the large volumes involved, end-of-life (EoL) concrete is Received in revised form identified as one of the priority streams for CDW recycling in most EU countries, but it is currently largely 10 February 2020 downcycled or even landfilled. The European projects C2CA and VEEP have proposed several cost- Accepted 13 April 2020 effective technologies to recover EoL concrete for new concrete manufacturing. To understand the po- Available online 22 April 2020 tential effects of large-scale implementation of those recycling technologies on the circular construction, Handling editor: Yutao Wang this study deployed static material flow analysis (MFA) for a set of EoL concrete management scenarios in the Netherlands constructed by considering the development factors in two, technological and temporal Keywords: dimensions.
    [Show full text]
  • E-Waste Management
    E-waste Management "E-waste" is a popular, informal name for electronic products nearing the end of their "useful life. "E-wastes are considered dangerous, as certain components of some electronic products contain materials that are hazardous, depending on their condition and density. The hazardous content of these materials pose a threat to human health and environment. Discarded computers, televisions, VCRs, stereos, copiers, fax machines, electric lamps, cell phones, audio equipment and batteries if improperly disposed can leach lead and other substances into soil and groundwater. Many of these products can be reused, refurbished, or recycled in an environmentally sound manner so that they are less harmful to the ecosystem. This paper highlights the hazards of e-wastes, the need for its appropriate management and options that can be implemented. INTRODUCTION Industrial revolution followed by the advances in information technology during the last century has radically changed people's lifestyle. Although this development has helped the human race, mismanagement has led to new problems of contamination and pollution. The technical prowess acquired during the last century has posed a new challenge in the management of wastes. For example, personal computers (PCs) contain certain components, which are highly toxic, such as chlorinated and brominated substances, toxic gases, toxic metals, biologically active materials, acids, plastics and plastic additives. The hazardous content of these materials pose an environmental and health threat. Thus proper management is necessary while disposing or recycling ewastes. These days computer has become most common and widely used gadget in all kinds of activities ranging from schools, residences, offices to manufacturing industries.
    [Show full text]
  • "Sustainable Materials Management"?
    Briefing Paper: What are “Sustainable Materials” and “Sustainable Materials Management”? October 4, 2011 Primary Authors: David Allaway & Peter Spendelow What is a sustainable level of material or resource consumption? The 1994 Oslo Symposium on Sustainable Consumption defined "sustainable consumption" as: "the use of services and related products which respond to basic needs and bring a better quality of life while minimizing the use of natural resources and toxic materials as well as the emissions of waste and pollutants over the life cycle of the service or product so as not to jeopardize the needs of future generations." While useful conceptually, the previous definition may be difficult to apply in practice. When it comes to materials, is it possible to define in more detail the meaning of “sustainable materials management”? How would we know if a material (and its management) actually is “sustainable”? What would be the attributes of such a material? More broadly, how would we know if any action is sustainable? Various thinkers and organizations have proposed a variety of answers to these questions – sometimes specific to materials, other times about sustainability more broadly. This paper briefly introduces six different responses, and summarizes some of the advantages and limitations of each. The six responses are: • William McDonough and Michael Braungart’s “Cradle to Cradle” and philosophy of “Waste Equals Food” • Zero Waste • The Natural Step • The Ecological Footprint • The Sustainable Packaging Coalition’s “Definition of Sustainable Packaging” • Internalizing Externalities / Least-Cost Planning Cradle to Cradle and “Waste Equals Food” Summary: Architect William McDonough and chemist Michael Braungart popularized the theory of “Cradle to Cradle,” explained in their 2002 book Cradle to Cradle: Remaking the Way We Make Things.
    [Show full text]
  • Recycling Plastic: Complications & Limitations
    Eureka Recycling is a nonprofit organization, created by the Saint Paul Neighborhood Energy Consortium, that specializes in recycling and waste reduction and manages Saint Paul’s recycling program. Our mission is to reduce waste today through innovative resource management and to reach a waste-free tomorrow by demonstrating that waste is preventable not inevitable. We believe that our resources are valuable—like gold—and our goal is to provide you with an opportunity to conserve them. Recycling Plastic: Complications & Limitations Plastic is light, easy to store and transport, comes in an endless variety of textures and shapes and can hold almost anything. Those properties make it attractive to manufacturers and packagers, who use it for anything from ketchup bottles to disposable utensils. Unfortunately, plastic is much more difficult to recycle than materials like glass, aluminum or paper. Most plastic soon ends up in a landfill or incinerator. Despite promotion of plastic recycling, plastic production has outpaced recycling by five times over the past decade. While increased plastic recycling is one way to alleviate this problem, it has only limited potential to reduce the glut of plastic waste. Resin Codes Don’t Equal Recyclability The Plastic Numbering System Most plastic packaging is marked with a Almost all plastic products are imprinted with a resin code — a small resin code to identify the basic type of number enclosed by the “chasing arrows” symbol. This code can be chemical compound used in the product. This code is usually found on misleading, since it is not intended to indicate that the plastic is the bottom of the container.
    [Show full text]
  • Exploration of the Role of Extended Producer Responsibility for the Circular Economy in the Netherlands
    Exploration of the Role of Extended Producer Responsibility for the circular economy in the Netherlands June 27th 2016 Table of contents 1 Introduction 3 2 EPR & routes for optimization 5 3 Extend the scope of EPR regulation to new products and waste streams 6 3.1 EPR in neighboring regions 6 3.2 Criteria for EPR implementation 10 3.3 Relevance of new EPR obligations in the Netherlands 13 4 Deepen the scope of EPR within regulated waste streams 18 5 Strengthen the financial EPR incentives for eco-design 23 5.1 Weight 25 5.2 Design for recycling 25 5.3 Presence of hazardous materials 26 5.4 Durability (lifetime) of products 27 5.5 Prevention 27 5.6 Repairability 28 5.7 Recycled content 29 6 Conclusions and following steps 30 7 References 33 8 Appendix 1: interviews 37 9 Appendix 2: countries 41 10 Appendix 3: feedback of VPN (in Dutch) 48 Notes 52 Total number of pages: 54 Page 2 Version No. Date Status To 5 27 June 2016 Final concept Ministry of Infrastructure and Environment, Hans Spiegeler Authors: Maarten Dubois (EY Belgium), Diana de Graaf (EY Netherlands), Joachim Thieren (EY Belgium) Acknowledgements: The authors thank Roeland Bracke, Peter Borkey, Paul Rotteveel, Eelco Smit and Charline Ducas for their collaboration and feedback. This report does not necessarily represent their opinion and the content of the study is the sole responsibility of the authors. Page 3 1 Introduction Already in the ’70s and ’80s, the Netherlands have positioned themselves as frontrunners in the management of waste and secondary resources.
    [Show full text]
  • Extended Producer Responsibility in a Non-Oecd Context
    EXTENDED PRODUCER RESPONSIBILITY IN A NON-OECD CONTEXT: THE MANAGEMENT OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT IN INDIA PANATE MANOMAIVIBOOL, THOMAS LINDHQVIST, NAOKO TOJO REPORT COMMISSIONED BY GREENPEACE INTERNATIONAL ©Behring/Greenpeace Colophon © August 2007 Lund University International Institute for Industrial and Environmental Economics P.O. Box 196 221 00 Lund Sweden ISBN: 987-91-88902-41-2 Cover photo: Greenpeace/Behring Design: Pé de Wit Print: Macula, Boskoop, Netherlands Produced on recycled chlorine-free paper Migrant workers take apart electric devices in Guiyu, China. 2 PROLOGUE BY GREENPEACE INTERNATIONAL Greenpeace International commissioned this report to test how This is where governments have to step in. EPR laws for e-waste the principle of Extended Producer Responsibility (EPR) for waste implemented globally would level the playing fi eld for the electro- from electronics equipment (e-waste), embodied in EU, Japanese, nics sector – which after all is a global industry. As priority, South Korean and other OECD (Organisation for Economic and governments should not only copy the EU Directives, but learn Co-operation Development) legislation could be applied effectively from their shortfalls and pass stronger regulations. in countries outside of the OECD. Many developing countries host production facilities where Greenpeace believes that laws requiring producers to take res- workers are exposed to the same harmful substances that are later ponsibility for their products, once discarded by their customers, found in the products. There is increasing evidence of even wider are urgently needed worldwide to tackle the global e-waste crisis. worker and community exposure to the toxic chemicals in e-waste Although China has restricted hazardous substances in some when it comes to be recycled.
    [Show full text]
  • Compostable Plastics: CHALLENGES & OPPORTUNITIES
    Compostable plastics: CHALLENGES & OPPORTUNITIES Dr. Love-Ese Chile Dr. Chile’s Biases and Values I’m a… Researcher Evidence-based decision-making Consultant Conversation, communication and collaboration Millennial Honesty, transparency, radical forward thinking We face global challenges. No time to wait, no time for waste. 3 Alternative visions for tomorrow 4 Regenerative Systems restore, renew or revitalize their own sources of energy and materials 5 Plastics have transformed how we live, work & eat 6 What makeso a plastic? Polymer = Greek for “many parts” Plastics are made from longo chains called polymers Polymers are made from singleo units called monomers All plastics are polymers BUT Not all polymers are plastics POLYMER DEFORMABLE? REFORMABLE? Plastics ✔️ ✔️ Rubbers ✔️ ❌ Resins ❌ ❌ Single use products and packaging – Often in contact with food and other organic matter making useful separation difficult Short term use products and packaging – Often in contact with liquids, gels, powders Plastics are COMPLEX Consumer products – EveryEveryday day products products Engineering plastics – Highly durable, made for specific applications Food Loss & Waste 28% of food is wasted each year 35.5 million • Major economic losses metric tonnes • Wasted natural resources of food waste: • GHG increased for no value Planned Packaging reduces food waste by: Unplanned • Maintaining freshness, nutritional value and safety 32% 68% • Efficiently containing and protecting • Delivering portion control and resealability Gooch, M., Bucknell, D., LaPlain, D., Dent, B., Whitehead, P., Felfel, A., Nikkel, L., Maguire, M. (2019). The Avoidable Crisis of Food Waste: Technical Report; Value Chain Management International Environmental impacts of plastic packaging • 40% of plastics produced globally are used in packaging • Often too difficult to sort & clean; only 14% collected for recycling Ellen McArthur Foundation, 2016.
    [Show full text]