False Solutions to the Plastic Pollution Crisis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hazardous Waste Minimization Guide
Waste Minimization Guide Environmental Health & Safety 4202 E. Fowler Ave. OPM 100 Tampa, FL 33620 (813) 974-4036 h ttp://www.usf.edu/ehs/ June 1, 2020 Table of Contents Introduction .............................................................................................................................................. 2 Methods for Waste Minimization ............................................................................................................. 2 Source Reduction .................................................................................................................................. 2 Environmentally Sound Recycling (ESR) .................................................................................................... 4 Treatment ............................................................................................................................................. 4 Managing Waste Efficiently ...................................................................................................................... 4 Flammable Liquids and Solids ............................................................................................................... 5 Halogenated Solvents ........................................................................................................................... 5 Solvent Contaminated Towels and Rags ............................................................................................... 6 Paint related Wastes ............................................................................................................................ -
Five Principles of Waste Product Redesign Under the Upcycling Concept
International Forum on Energy, Environment Science and Materials (IFEESM 2015) Five Principles of Waste Product Redesign under the Upcycling Concept Jiang XU1 & Ping GU1 1School of Design, Jiangnan University, Wuxi, China KEYWORD: Upcycling; Redesign principle; Green design; Industrial design; Product design ABSTRACT: It explores and constructs the principles of waste product redesign which are based on the concept of upcycling. It clarifies the basic concept of upcycling, briefly describes its current development, deeply discusses its value and significance, combines with the idea of upcycling which behinds regeneration design principle from the concept of “4R” of green design, and takes real-life case as example to analyze the principles of waste product redesign. It puts forward five principles of waste product redesign: value enhancement, make the most use of waste, durable and environmental protection, cost control and populace's aesthetic. INTRODUCTION Recently, environmental problems was becoming worse and worse, while as a developing country, China is facing dual pressures that economical development and environmental protection. However, large numbers of goods become waste every day all over the world, but the traditional recycling ways, such as melting down and restructuring, not only produce much CO2, but also those restruc- tured parts or products cannot mention in the same breath with raw ones. As a result, the western countries started to center their attention to the concept of “upcycling” of green design, which can transfer the old and waste things into more valuable products to vigorously develop the green econ- omy. Nevertheless, this new concept hasn’t been well known and the old notion of traditionally inef- ficient reuse still predominant in China, so it should be beneficial for our social development to con- struct the principles of waste products’ redesign which are based on the concept of upcycling. -
Sector N: Scrap and Waste Recycling
Industrial Stormwater Fact Sheet Series Sector N: Scrap Recycling and Waste Recycling Facilities U.S. EPA Office of Water EPA-833-F-06-029 February 2021 What is the NPDES stormwater program for industrial activity? Activities, such as material handling and storage, equipment maintenance and cleaning, industrial processing or other operations that occur at industrial facilities are often exposed to stormwater. The runoff from these areas may discharge pollutants directly into nearby waterbodies or indirectly via storm sewer systems, thereby degrading water quality. In 1990, the U.S. Environmental Protection Agency (EPA) developed permitting regulations under the National Pollutant Discharge Elimination System (NPDES) to control stormwater discharges associated with eleven categories of industrial activity. As a result, NPDES permitting authorities, which may be either EPA or a state environmental agency, issue stormwater permits to control runoff from these industrial facilities. What types of industrial facilities are required to obtain permit coverage? This fact sheet specifically discusses stormwater discharges various industries including scrap recycling and waste recycling facilities as defined by Standard Industrial Classification (SIC) Major Group Code 50 (5093). Facilities and products in this group fall under the following categories, all of which require coverage under an industrial stormwater permit: ◆ Scrap and waste recycling facilities (non-source separated, non-liquid recyclable materials) engaged in processing, reclaiming, and wholesale distribution of scrap and waste materials such as ferrous and nonferrous metals, paper, plastic, cardboard, glass, and animal hides. ◆ Waste recycling facilities (liquid recyclable materials) engaged in reclaiming and recycling liquid wastes such as used oil, antifreeze, mineral spirits, and industrial solvents. -
COMPOST FEASIBILITY STUDY April 2017
DISTRICT OF COLUMBIA COMPOST FEASIBILITY STUDY April 2017 COMMISSIONED BY: District of Columbia Department of Public Works PREPARED BY: 416 LONGSHORE DRIVE ANN ARBOR, MI 48105 734.996.1361 RECYCLE.COM TABLE OF CONTENTS Executive Summary ....................................................................................................................................... 1 Background and Purpose .............................................................................................................................. 7 Current Operations ................................................................................................................................... 8 SSO Collection ......................................................................................................................................... 10 Processing ............................................................................................................................................... 11 Organics Collection ...................................................................................................................................... 12 Processing Technology ................................................................................................................................ 14 Organics Outreach ....................................................................................................................................... 16 SSO Curbside Collection Modeling ............................................................................................................. -
III . Waste Management
III. WASTE MANAGEMENT Economic growth, urbanisation and industrialisation result in increasing volumes and varieties of both solid and hazardous wastes. Globalisation can aggravate waste problems through grow ing international waste trade, with developing countries often at the receiving end. Besides negative impacts on health as well as increased pollution of air, land and water, ineffective and inefficient waste management results in greenhouse gas and toxic emissions, and the loss of precious materials and resources. Pollution is nothing but An integrated waste management approach is a crucial part of interna- the resources we are not harvesting. tional and national sustainable development strategies. In a life-cycle per- We allow them to disperse spective, waste prevention and minimization generally have priority. The because we’ve been remaining solid and hazardous wastes need to be managed with effective and efficient measures, including improved reuse, recycling and recovery ignorant of their value. of useful materials and energy. — R. Buckminster Fuller The 3R concept (Reduce, Reuse, Recycle) encapsulates well this life-cycle Scientist (1895–1983) approach to waste. WASTE MANAGEMENT << 26 >> Hazardous waste A growing share of municipal waste contains hazardous electronic or electric products. In Europe ewaste is increasing by 3–5 per Hazardous waste, owing to its toxic, infectious, radioactive or flammable cent per year. properties, poses an actual or potential hazard to the health of humans, other living organisms, or the environment. According to UNEP, some 20 to 50 million metric tonnes of e-waste are generated worldwide every year. Other estimates expect computers, No data on hazardous waste generation are available for most African, mobile telephones and television to contribute 5.5 million tonnes to Middle Eastern and Latin American countries. -
Recycling and Waste Reduction at Convenience Stores and Gas Stations
Recycling and Waste Reduction at Convenience Stores and Gas Stations Wisconsin convenience Why Recycle and Reduce Waste? stores and gas stations To save resources: Recycling saves valuable reusable resources and reduces the welcome visitors from Wisconsin energy use and pollution associated with extracting and manufacturing virgin and beyond. Often these stops materials. are the only places travelers will To reduce costs: Like other businesses, convenience stores and gas stations pay visit before arriving at their for waste disposal. In many cases, recycling services cost significantly less than trash disposal; companies that reuse or recycle more waste can save significant destinations. People used to costs on waste disposal. Reusing more materials can also reduce purchasing and recycling at home and work have handling costs. come to rely on convenience To improve customer service: Recycling demonstrates your business’ commitment stores and gas stations for to environmental protection. A recent survey indicates over 95% of Wisconsin recycling while on the road. citizens recycle regularly. People now expect to find recycling containers wherever they travel. Offering recycling is just another way to better serve your customers. Luckily, recycling not only protects valuable reusable What Should Be Recycled in Wisconsin? resources, it also helps your • Aluminum, glass, steel (tin) and bi-metal • Major appliances including air business save money and containers conditioners, clothes washers and dryers, • Plastic containers #1 and #2, including -
Residential Guide to WASTE DISPOSAL and RECYCLING in Collier County
Residential Guide to WASTE DISPOSAL and RECYCLING in Collier County Colliercountyf.gov/solidwaste (239) 252-2380 Services and Facilities in Collier County Te Solid and Hazardous Waste Management Division manages the collection of household waste, recyclable material, yard waste and bulky service throughout Collier County. Table of Contents Waste Management, Inc. of Florida and Waste Connections of Florida are the contracted haulers in Collier County for residential solid waste collection. Tey service all areas within the county Services and Facilities ........................................... 1 with the exception of the City of Naples. In addition to curbside solid waste, recycling, yard Curbside Collection waste, and bulky collection, Collier County operates several recycling drop-of centers to and Disposal Services ........................................2 - 3 collect and properly dispose of household hazardous waste. Items that can be recycled may also be dropped of at these conveniently located Bulky Items and Yard Waste ............................4 - 5 centers. Te mission of the Collier County Solid and Household Hazardous Waste ..........................6 - 7 Hazardous Waste Management Division is to deliver the best value, highest quality, sustainable solid waste management services that meet our Recycle Right .....................................................8 - 9 customers’ expectations while protecting the environment. Tis serves to extend the life of the landfll and preserve beautiful Collier County. Multi-family Recycling -
Recycling Tips
RECYCLING TIPS www.KeepingVenturaCountyClean.com Recyclable Materials Paper Material Cardboard Plastic • Books (paperback and hard cover okay) • Cereal & Food Boxes (Flatten for more recycling) • Bottles, Jars, Jugs, Tubs (look for recycling • Catalogs / Brochures / Phone Books • Clean Pizza Boxes (no wax coating and or food logo on bottom labeled #1 - #7, no need to rinse) • Junk Mail & Envelopes (windows okay) waste) • Grocery Bags • File Folders Glass • Nursery Pots • Milk & Juice Cartons • Bottles & Jars- Green, Brown, Clear (lids & • Plastic Toys • Magazines & Newspappers labels okay, no need to rinse) • Yogurt Containers • Paper - All colors (staples in paper okay) Aluminum & Tin Cans Other • Paper Grocery Bags • Aluminum Food Trays • Shredded Paper (put in plastic bag and tie • Beverage Cans • Athletic Shoes securely) • Vegetable & Soup Cans Non-Recyclable Materials • Animal Waste • Liquids • Restaurant Grease/Oil • Bubble Wrap Packaging • Laminated Paper • Sharps • Chip Bags & Candy Wrappers • Napkins • Solar Panels • Electronic Waste (computers, monitors, lap tops, • Paper Towels • Tires mobile devices) • Plastic 3-Ring Binders • Used Paper Plates & Cups • Fluorescent Light Bulbs • Plastic Cups, Lids & Straws • Used Plastic Utensils • Food Waste (including fruit) • Plastic Food Wrapping • Window Pane Glass/Mirrors • Hazardous Waste (paint, automotive oil, • Polystyrene foam including foam cups, • Yard Waste (grass clippings, branches, batteries, solvents) plates, and packing materials leaves) WARNING! Electronic, Sharps, or Hazard -
Waste to Energy
WASTE TO ENERGY CONSIDERATIONS FOR INFORMED DECISION-MAKING Summary for policymakers What is Waste-to-Energy? Thermal Waste-to-Energy (WtE), also known as incineration with energy recovery, is a major waste treatment method in some developed countries and the most widely adopted technology that dominates the global WtE market. The European Union, however, which has relied on waste incineration for the past few decades, is now moving away from thermal WtE and other forms of incineration and is focusing on more FLUE GAS ecologically acceptable solutions such as EMISSIONS waste prevention, reuse and recycling as INPUTS AND Flue gas emissions contain the greenhouse it shifts towards a circular economy. gases and pollutants from the waste, which OUTPUTS OF requires further treatment before emission to the atmosphere. Emissions may include THERMAL carbon dioxide, nitrous oxide, nitrogen oxides, ammonia, carbon monoxide, volatile WASTE-TO- organic compounds, persistent organic ENERGY pollutants (e.g. furans and dioxins) and some heavy metals. PLANTS HEAT WASTE FEEDSTOCK Thermal energy is one of the energy products from the combustion Municipal solid waste, sorted of waste feedstock, which can or unsorted, is often used as the be used in district heating waste feedstock for thermal WtE system in plant. During the incineration process, vicinity. the volume of the waste feedstock can be greatly reduced by 90%. ELECTRICITY BOTTOM ASH Electricity is one of the energy Bottom ash is the residual material products of thermal WtE, which is from incineration. It contains the then transferred to the power grid non-combustible fraction of waste to power up households. -
End-Of-Life Modelling
Best Practice LCA: End-of-Life Modelling October 28, 2014 Agenda 1. Modelling EoL in LCA 2. Recycled content approach 3. Avoided burden approach 4. Value-corrected substitution 5. PE’s recommendations 6. Current PEF discussions 2 Modelling EoL in LCA 3 Modelling EoL in LCA General challenge • “Allocation” is commonly used to assign burdens associated with the upstream supply chain to each product of multi-output processes. • EoL modelling gives rise to a similar problem due to its multi-functionality – treat waste and produce valuable products (material and/or energy) • Focus on how the burden of virgin material production and the burden of EoL treatment be allocated between the first application in one product system and its subsequent application in the same or another product system. • Chosen allocation approach will affect modelling of other EoL pathways as well (e.g., landfill). 4 Modelling EoL in LCA Most common approaches • Recycled content approach (a.k.a. cut-off, 100/0) • Avoided burden approach (a.k.a. End-of-Life recycling, 0/100) • Value-Corrected Substitution 5 Recycled content approach 6 Recycled content approach General description • Scrap inputs to the product system are modelled as being free of any primary material burden (all assigned to the first life cycle). • The recycling of scrap generated by the product system is not part of the product system and the system boundary is drawn at the point of scrap generation. No credits for subsequent recycling. • When modelling other disposal processes (e.g., incineration with energy recovery, landfill with landfill gas capture), burdens are included, but no credits should be given for energy recovery. -
Subject Index
Index 2-opt 287, 288, 291, 293 arc 18, 19, 240–242, 260, 280–284, 335, 368, 369 architecture 45, 58, 61, 65, 68, 74, 75, 77, A 93, 103, 236, 274, 277, 375, 376, 422 as-good-as-new 458, 460, 462 a priori data 267, 270, 271, 273, 297, 305 assembly 25, 26, 48, 49, 55, 58, 64, 73, 74, absolute technical importance rating 84, 86, 101, 118, 229–231, 237, 239, 243, (ATIR) 131, 133–135 245, 249, 250, 256, 259, 278, 306–309, abundance 20, 218 312, 313, 316, 328, 329, 332–339, 343, accumulation 20–22, 282, 426 351, 356–361, 365, 371, 391, 416, 423, activity modeling 45, 46 424, 474, 510 actor 9, 41, 42, 54, 56, 82, 114 assembly line balancing 239, 256, 259, acquisition 93, 102, 103, 225, 232, 234, 278, 306–309, 343 291, 385, 445, 446, 449, 452, 453, 455, asset management 459, 496, 497 457, 458, 461–465, 466, 510 attitude 3, 139, 140, 219, 223, 237, 455, 457, adaptability 347, 415, 430 458, 466, 524 adaptation 16, 62, 64, 66, 67, 69, 102, 356, automotive 222, 388–391, 411, 446, 449, 368, 392, 408, 422, 442 456–458, 466, 468, 474 adaptive disassembly process planning autonomous barrier 521 363, 375 adaptive kanban 314, 329 adaptive learning 375, 378, 379 B adjacent element hill climbing (AEHC) 236, 238, 240, 242, 274, 285, 287–290 backlog cost 477, 483 after-sale product condition Basel Action Network (BAN) 500, 506 monitoring 92 Basel convention 498, 499, 501, 503 aggregation 2, 11, 16–18 Bayesian forecasting 223, 224 analytic hierarchy process (AHP) 105, Bayesian updating 105, 110, 124–129, 212 110, 115–118, 197, 205, 212, 214 beginning of life -
A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward
Venice Italy Apr 13-14, 2015, 17 (4) Part I A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward Kyungeun Sung related books have been published since 1999.1 Most books Abstract—Upcycling is a process in which used materials are (96%; 115 out of 120 books) in the sample were published converted into something of higher value and/or quality in their between 2008 and 2014 with higher publication rate between second life. It has been increasingly recognised as one promising 2012 and 2014 as 62.5% of all samples (75 books between means to reduce material and energy use, and to engender sustainable 2012 and 2014; 21 books in 2012; 28 in 2013; and 26 in production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from 2014). 53% (64/120) of the sampled books are categorised as numerous researchers and business practitioners in recent years. This ‘craft and hobbies’ whereas the other book categories show has been seen in the growing number of publications on this topic similar percentages (art & design: 10%; house & home DIY: since the 1990s. However, the overall volume of literature dealing 10%; science & technology: 9%; business & economics: 8%; with upcycling is still low and no major review has been presented. and the rest as miscellaneous).2 The theses search on Google Therefore, in order to further establish this field, this paper analyses Scholar simultaneously conducted by the author showed a and summarises the current body of literature on upcycling, focusing similar recent surge of publication: 90% (37/41) of these in the on different definitions, trends in practices, benefits, drawbacks and 3 barriers in a number of subject areas, and gives suggestions for future sample (since 2001) were published between 2009 and 2014.