Bell numbers, their relatives, and algebraic differential equations Martin Klazar Department of Applied Mathematics (KAM) and Institute for Theoretical Computer Science (ITI) Charles University Malostransk´en´amˇest´ı25 118 00 Praha Czech Republic e-mail:
[email protected]ff.cuni.cz running head: Bell numbers 1 Abstract We prove that the ordinary generating function of Bell numbers sat- isfies no algebraic differential equation over C(x) (in fact, over a larger field). We investigate related numbers counting various set partitions (the Uppuluri–Carpenter numbers, the numbers of partitions with j mod i blocks, the Bessel numbers, the numbers of connected partitions, and the numbers of crossing partitions) and prove for their ogf’s analogous results. Recurrences, functional equations, and continued fraction expansions are derived. key words: Bell number; ordinary generating function; algebraic differential equation; set partition; continued fraction; crossing Address: Martin Klazar Department of Applied Mathematics (KAM) Charles University Malostransk´en´amˇest´ı25 118 00 Praha Czech Republic e-mail:
[email protected]ff.cuni.cz fax: 420-2-57531014 2 1 Introduction The Bell number Bn counts the partitions of [n] = {1, 2, . , n}. The sequence of Bell numbers begins (Bn)n≥1 = (1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975,...) and is listed in EIS [32] as sequence A000110. It is well-known (Comtet [9, p. 210], Lov´asz[22, Problem 1.11], Stanley [34, p. 34]) that the exponential generating function of Bn is given by n X Bnx x B (x) = = ee −1. e n! n≥0 x 0 0 0 From e = (Be/Be) = Be/Be we obtain the algebraic differential equation 00 0 2 0 Be Be − (Be) − BeBe = 0.