Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ]. -
Abstract in This Paper, D-Strong and Almost D-Strong Near-Rings Ha
Periodica Mathematica Hungarlca Vol. 17 (1), (1986), pp. 13--20 D-STRONG AND ALMOST D-STRONG NEAR-RINGS A. K. GOYAL (Udaipur) Abstract In this paper, D-strong and almost D-strong near-rings have been defined. It has been proved that if R is a D-strong S-near ring, then prime ideals, strictly prime ideals and completely prime ideals coincide. Also if R is a D-strong near-ring with iden- tity, then every maximal right ideal becomes a maximal ideal and moreover every 2- primitive near-ring becomes a near-field. Several properties, chain conditions and structure theorems have also been discussed. Introduction In this paper, we have generalized some of the results obtained for rings by Wong [12]. Corresponding to the prime and strictly prime ideals in near-rings, we have defined D-strong and almost D-strong near-rings. It has been shown that a regular near-ring having all idempotents central in R is a D-strong and hence almost D-strong near-ring. If R is a D-strong S-near ring, then it has been shown that prime ideals, strictly prime ideals and com- pletely prime ideals coincide and g(R) = H(R) ~ ~(R), where H(R) is the intersection of all strictly prime ideals of R. Also if R is a D-strong near-ring with identity, then every maximal right ideal becomes a maximal ideal and moreover every 2-primitive near-ring becomes a near-field. Some structure theorems have also been discussed. Preliminaries Throughout R will denote a zero-symmetric left near-ring, i.e., R -- Ro in the sense of Pilz [10]. -
Neural Networks and the Search for a Quadratic Residue Detector
Neural Networks and the Search for a Quadratic Residue Detector Michael Potter∗ Leon Reznik∗ Stanisław Radziszowski∗ [email protected] [email protected] [email protected] ∗ Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 Abstract—This paper investigates the feasibility of employing This paper investigates the possibility of employing ANNs artificial neural network techniques for solving fundamental in the search for a solution to the quadratic residues (QR) cryptography problems, taking quadratic residue detection problem, which is defined as follows: as an example. The problem of quadratic residue detection Suppose that you have two integers a and b. Then a is is one which is well known in both number theory and a quadratic residue of b if and only if the following two cryptography. While it garners less attention than problems conditions hold: [1] such as factoring or discrete logarithms, it is similar in both 1) The greatest common divisor of a and b is 1, and difficulty and importance. No polynomial–time algorithm is 2) There exists an integer c such that c2 ≡ a (mod b). currently known to the public by which the quadratic residue status of one number modulo another may be determined. This The first condition is satisfied automatically so long as ∗ work leverages machine learning algorithms in an attempt to a 2 Zb . There is, however, no known polynomial–time (in create a detector capable of solving instances of the problem the number of bits of a and b) algorithm for determining more efficiently. A variety of neural networks, currently at the whether the second condition is satisfied. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
On Sufficient Conditions for the Existence of Twin Values in Sieves
On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius . -
MAT344 Lecture 6
MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1. -
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n. -
2019 Practice Mathcounts Solutions
2019 Practice Mathcounts Solutions Austin Math Circle January 20, 2019 1 Sprint Round Problem 1. What is the sum of the first five odd numbers and the first four even numbers? Solution. This is simply the sum of all the integers one through nine, which is 45 . Proposed by Jay Leeds. Problem 2. Shipping a box costs a flat rate of $5 plus $2 for every pound after the first five pounds. How much does it cost to ship a 18-pound box? Solution. An 18-pound box has 13 excess pounds, so our fee is 13 $2 $5 $31 . ¢ Å Æ Proposed by Jay Leeds. Problem 3. In rectangle ABCD, AB 6, BC 8, and M is the midpoint of AB. What is the area of triangle Æ Æ CDM? Solution. We see that this triangle has base six and height eight, so its area is 6 8/2 24 . ¢ Æ Proposed by Jay Leeds. Problem 4. Creed flips three coins. What is the probability that he flips heads at least once? Express your answer as a common fraction. 3 Solution. There is a ¡ 1 ¢ 1 chance that Creed flips no heads, so the probability that he flips at least once heads 2 Æ 8 7 is 1 1 . ¡ 8 Æ 8 Proposed by Jay Leeds. Problem 5. Compute the median of the following five numbers: A 43 , B 4.5, C 23 , D 22, and E 4.9. Æ 9 Æ Æ 5 Æ Æ Write A, B, C, D, or E as your answer. Solution. We can easily sort 22 4, 4.5, and 4.9. -
What Can Be Said About the Number 13 Beyond the Fact That It Is a Prime Number? *
CROATICA CHEMICA ACTA CCACAA 77 (3) 447¿456 (2004) ISSN-0011-1643 CCA-2946 Essay What Can Be Said about the Number 13 beyond the Fact that It Is a Prime Number? * Lionello Pogliani,a Milan Randi},b and Nenad Trinajsti}c,** aDipartimento di Chimica, Universitá della Calabria, 879030 Rende (CS), Italy bDepartment of Mathematics and Computer Science, Drake University, Des Moines, Iowa 50311, USA cThe Rugjer Bo{kovi} Institute, P.O. Box 180, HR-10002 Zagreb, Croatia RECEIVED DECEMBER 2, 2003; REVISED MARCH 8, 2004; ACCEPTED MARCH 9, 2004 Key words The story of the number 13 that goes back to ancient Egypt is told. The mathematical signifi- art cance of 13 is briefly reviewed and 13 is discussed in various contexts, with special reference chemistry to the belief of many that this number is a rather unlucky number. Contrary examples are also history presented. Regarding everything, the number 13 appears to be a number that leaves no one in- literature different. number theory poetry science INTRODUCTION – religious [3 in the Christian faith, 5 in Islam]; – dramatic [3 and 9 by William Shakespeare (1564– »Numero pondere et mensura Deus omnia condidit.« 1616) in Macbeth]; Isaac Newton in 1722 [ 1 – literary 3 and 10 by Graham Greene (1904–1991) (Rozsondai and Rozsondai) in the titles of his successful short novels The The concept of number is one of the oldest and most Third Man and The Tenth Man; 5 and 9 by Dorothy useful concepts in the history of human race.2–5 People Leigh Sayers (1893–1957) in the titles of her nov- have been aware of the number concept from the very els The Five Red Herrings and The Nine Taylors. -
Conjecture of Twin Primes (Still Unsolved Problem in Number Theory) an Expository Essay
Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 229 { 252 CONJECTURE OF TWIN PRIMES (STILL UNSOLVED PROBLEM IN NUMBER THEORY) AN EXPOSITORY ESSAY Hayat Rezgui Abstract. The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers) called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900) which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover. Petronas towers (Twin towers) Kuala Lumpur, Malaysia 2010 Mathematics Subject Classification: 11A41; 97Fxx; 11Yxx. Keywords: Twin primes; Brun's constant; Zhang's discovery; Polymath project. ****************************************************************************** http://www.utgjiu.ro/math/sma 230 H. Rezgui Contents 1 Introduction 230 2 History and some interesting deep results 231 2.1 Yitang Zhang's discovery (April 17, 2013)............... 236 2.2 "Polymath project"........................... 236 2.2.1 Computational successes (June 4, July 27, 2013)....... 237 2.2.2 Spectacular progress (November 19, 2013)........... 237 3 Some of largest (titanic & gigantic) known twin primes 238 4 Properties 240 5 First twin primes less than 3002 241 6 Rarefaction of twin prime numbers 244 7 Conclusion 246 1 Introduction The prime numbers's study is the foundation and basic part of the oldest branches of mathematics so called "Arithmetic" which supposes the establishment of theorems. -
Code Library
Code Library Himemiya Nanao @ Perfect Freeze September 13, 2013 Contents 1 Data Structure 1 1.1 atlantis .......................................... 1 1.2 binary indexed tree ................................... 3 1.3 COT ............................................ 4 1.4 hose ........................................... 7 1.5 Leist tree ........................................ 8 1.6 Network ......................................... 10 1.7 OTOCI ........................................... 16 1.8 picture .......................................... 19 1.9 Size Blanced Tree .................................... 22 1.10 sparse table - rectangle ................................. 27 1.11 sparse table - square ................................... 28 1.12 sparse table ....................................... 29 1.13 treap ........................................... 29 2 Geometry 32 2.1 3D ............................................. 32 2.2 3DCH ........................................... 36 2.3 circle's area ....................................... 40 2.4 circle ........................................... 44 2.5 closest point pair .................................... 45 2.6 half-plane intersection ................................. 49 2.7 intersection of circle and poly .............................. 52 2.8 k-d tree .......................................... 53 2.9 Manhattan MST ..................................... 56 2.10 rotating caliper ...................................... 60 2.11 shit ............................................ 63 2.12 other .......................................... -
Statistics of Random Permutations and the Cryptanalysis of Periodic Block Ciphers
c de Gruyter 2008 J. Math. Crypt. 2 (2008), 1–20 DOI 10.1515 / JMC.2008.xxx Statistics of Random Permutations and the Cryptanalysis Of Periodic Block Ciphers Nicolas T. Courtois, Gregory V. Bard, and Shaun V. Ault Communicated by xxx Abstract. A block cipher is intended to be computationally indistinguishable from a random permu- tation of appropriate domain and range. But what are the properties of a random permutation? By the aid of exponential and ordinary generating functions, we derive a series of collolaries of interest to the cryptographic community. These follow from the Strong Cycle Structure Theorem of permu- tations, and are useful in rendering rigorous two attacks on Keeloq, a block cipher in wide-spread use. These attacks formerly had heuristic approximations of their probability of success. Moreover, we delineate an attack against the (roughly) millionth-fold iteration of a random per- mutation. In particular, we create a distinguishing attack, whereby the iteration of a cipher a number of times equal to a particularly chosen highly-composite number is breakable, but merely one fewer round is considerably more secure. We then extend this to a key-recovery attack in a “Triple-DES” style construction, but using AES-256 and iterating the middle cipher (roughly) a million-fold. It is hoped that these results will showcase the utility of exponential and ordinary generating functions and will encourage their use in cryptanalytic research. Keywords. Generating Functions, EGF, OGF, Random Permutations, Cycle Structure, Cryptanaly- sis, Iterations of Permutations, Analytic Combinatorics, Keeloq. AMS classification. 05A15, 94A60, 20B35, 11T71. 1 Introduction The technique of using a function of a variable to count objects of various sizes, using the properties of multiplication and addition of series as an aid, is accredited to Pierre- Simon Laplace [12].