Number Theory and Combinatorics

Total Page:16

File Type:pdf, Size:1020Kb

Number Theory and Combinatorics Number Theory and Combinatorics B SURY Stat-Math Unit, Indian Statistical Institute, Bengaluru, India. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the publisher. c Indian Academy of Sciences 2017 Reproduced from Resonance{journal of science education Reformatted by TNQ Books and Journals Pvt Ltd, www.tnq.co.in Published by Indian Academy of Sciences Foreword The Masterclass series of eBooks brings together pedagogical articles on single broad topics taken from Resonance, the Journal of Science Educa- tion, that has been published monthly by the Indian Academy of Sciences since January 1996. Primarily directed at students and teachers at the un- dergraduate level, the journal has brought out a wide spectrum of articles in a range of scientific disciplines. Articles in the journal are written in a style that makes them accessible to readers from diverse backgrounds, and in addition, they provide a useful source of instruction that is not always available in textbooks. The third book in the series, `Number Theory and Combinatorics', is by Prof. B Sury. A celebrated mathematician, Prof. Sury's career has largely been at the Tata Institute of Fundamental Research, Mumbai', and the Indian Statistical Institute, Bengaluru, where he is presently professor. He has contributed pedagogical articles regularly to Resonance, and his arti- cles on Number Theory and Combinatorics comprise the present book. He has also served for many years on the editorial board of Resonance. Prof. Sury has contributed significantly to research in the areas of linear al- gebraic groups over global and local fields, Diophantine equations, division algebras, central extensions of p-adic groups, applications of density theo- rems in number theory, K-theory of Chevalley groups, combinatorial num- ber theory, and generation of matrix groups over rings. The book, which will be available in digital format, and will be housed as always on the Academy website, will be valuable to both students and experts as a useful handbook on Number Theory and Combinatorics. Amitabh Joshi Editor of Publications Indian Academy of Sciences August 2017 iii About the Author B Sury is a Professor of Mathematics at the Indian Statistical Institute in Bangalore since 1999. He was earlier at the Tata Institute of Fundamental Research, Mumbai, where he also got his PhD. Sury's professional interests have been very diverse: from the theory of algebraic groups and arithmetic groups, to algebraic K-theory, and number theory. He has contributed to these areas both through research papers and also through books. Sury enjoys thinking about mathematical problems at all levels, and has taken keen interest in promoting problem solving skills. As a result of his abilities and willingness to shoulder responsibilities both in training stu- dents, and in writing exposition for students, he is universally sought after for any student activity in the country: he has been associated with sev- eral student magazines in the country, perhaps the important of them all, `Resonance' for the last two decades, as well the Ramanujan Math Soci- eties Newsletter. He has been an important member of the Mathematical Olympiad Program of the country. Sury is known to friends and colleagues for his wit and humor, which seems to come almost instantaneously; one can enjoy some of his limericks on his webpage at ISI. The present volume brings together some of the writings of B Sury on Number Theory and Combinatorics which have appeared in `Resonance' during the last two decades. Each of the articles is a masterpiece! I am sure it will be a feast for the intellect of any reader with some mathematical inclination. Dipendra Prasad TIFR, Mumbai v Contents 1 Cyclotomy and Cyclotomic Polynomials: The Story of how Gauss 1 Narrowly Missed Becoming a Philologist 2 Polynomials with Integer Values 25 3 How Far Apart are Primes? Bertrand's Postulate 37 4 Sums of Powers, Bernoulli and the Riemann Zeta function 47 5 Frobenius and His Density Theorem for Primes 55 6 When is a Decimal Expansion Irrational? 63 7 Revisiting Kummer's and Legendre's Formulae 65 8 Bessels Contain Continued Fractions of Progressions 69 9 The Prime Ordeal 75 10 Extending Given Digits to Make Primes or Perfect Powers 87 11 An Irrational Walk and Why 1 is Not Congruent 93 12 Covering the Integers 99 13 S Chowla and S S Pillai: The Story of Two Peerless Indian 103 Mathematicians 14 Multi-variable Chinese Remainder Theorem 127 15 Which Positive Integers are Interesting? 135 16 Counting, Recounting and Matching 149 17 Odd if it isn't an Even Fit! Lighting up Tiling 161 18 Polya's One Theorem with 100 pages of Applications 169 vii Preface Over the last two decades, my expositions in Resonance are on roughly two topics { (i) number theory and combinatorics, and (ii) group theory. In this volume, some of the expositions related to the former topic have been put together. The chapter on the work of Chowla and Pillai is part of an article written in collaboration with R Thangadurai that appeared in Reso- nance. I would like to thank Thangadurai for allowing me to include it here. I have attempted to retain the original write-ups of the articles as much as possible other than carrying out some corrections and (minor) additions. As this is a compendium of articles that appeared in Resonance, at times some material is repeated in different chapters. Further, this makes the compilation somewhat uneven in terms of levels of mathematical maturity required of the reader despite my efforts to ensure uniformity. Concerning my philosophy of mathematics dissemination, I have staunchly held the opinion that many topics in mathematics which are supposedly advanced in nature, can be exposed in a manner understand- able to a motivated undergraduate or postgraduate student. It may be somewhat of a challenge to make it comprehensible while still retaining the essential depth and technicality of the content, but it should nevertheless be possible. Over the years, I have tried to put this in practice. One of the best compliments I have received from Professor K R Parthasarathy, who told a visitor that he had learnt some number theory through these articles. Despite this obvious exaggeration (or rather because of this perhaps!), I was encouraged to keep trying to share some of the beautiful number theoretic and combinatorial ideas I myself enjoyed learning. To my surprise, I have occasionally found references to some of these articles in university courses in various places, and that has been fulfilling. The years 1981-1999 at the Tata Institute of Fundamental Research { where I first saw what excellence means { have had a positive effect on me in terms of being able to appreci- ate good mathematics (irrespective of whether I could originally contribute to it or not). During those years, it was a lot of fun to learn over conversa- tions near the sea-side, at the coffee-table, and during ping-pong sessions from Madhav Nori, Venkataramana, Dipendra Prasad, C S Rajan, Ravi Rao, Raja Sridharan, Amit Roy, R R Simha, Bhatwadekar, Subramaniam, Parameswaran, Nitin Nitsure, Kapil Paranjape, Stephen Lobo, Kumare- san, and many others. In most instances, I would excitedly come up to them with something I had \seen", and they would be willing listeners and teachers. In later years, I have always benefited by talking to students and realizing time and again what they found simultaneously enjoyable as well ix as not easy to understand. In almost all cases, after a meeting or discussion with some students, I felt compelled to write on a certain topic. Inciden- tally, some of the summer projects that students worked on have appeared in Resonance as well and, many of them were rewritten by me { showing my desire to communicate in a particular way. I personally know several colleagues who are much better at writing such expositions but, not many of them seem to find the time to write at this level. I wish they would. Finally, I am indebted to Professor Ram Ramaswamy for suggesting the publication of this volume, for convincing me that it could be useful, and for pushing me to finish this process. B Sury July 2017 x Cyclotomy and Cyclotomic Polynomials: The Story of how Gauss Narrowly Missed Becoming a Philologist A person who does arouse much admiration and a million wows! Such a mathematicians' prince has not been born since. I talk of Carl Friedrich Gauss! Cyclotomy { literally `circle-cutting' { was a puzzle begun more than 2000 years ago by the Greek geometers. In this pastime, they used two implements { a ruler to draw straight lines and a pair of compasses to draw circles. The problem of cyclotomy was to divide the circumference of a circle into n equal parts using only these two implements. As these n points on the circle are also the corners of a regular n-gon, the problem of cyclotomy is equivalent to the problem of constructing the regular n-gon using only a ruler and a pair of compasses. Euclid's school constructed the equilateral triangle, the square, the regular pentagon and the regular hexagon. For more than 2000 years mathematicians had been unanimous in their view that for no prime p bigger than 5 can the p-gon be constructed by ruler and compasses. The teenager Carl Friedrich Gauss proved a month before he was 19 that the regular 17-gon is constructible. He did not stop there but went ahead to completely characterise all those n for which the regular n-gon is constructible! This achievement of Gauss is one of the most surprising discoveries in mathematics.
Recommended publications
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • A Tour of Fermat's World
    ATOUR OF FERMAT’S WORLD Ching-Li Chai Samples of numbers More samples in arithemetic ATOUR OF FERMAT’S WORLD Congruent numbers Fermat’s infinite descent Counting solutions Ching-Li Chai Zeta functions and their special values Department of Mathematics Modular forms and University of Pennsylvania L-functions Elliptic curves, complex multiplication and Philadelphia, March, 2016 L-functions Weil conjecture and equidistribution ATOUR OF Outline FERMAT’S WORLD Ching-Li Chai 1 Samples of numbers Samples of numbers More samples in 2 More samples in arithemetic arithemetic Congruent numbers Fermat’s infinite 3 Congruent numbers descent Counting solutions 4 Fermat’s infinite descent Zeta functions and their special values 5 Counting solutions Modular forms and L-functions Elliptic curves, 6 Zeta functions and their special values complex multiplication and 7 Modular forms and L-functions L-functions Weil conjecture and equidistribution 8 Elliptic curves, complex multiplication and L-functions 9 Weil conjecture and equidistribution ATOUR OF Some familiar whole numbers FERMAT’S WORLD Ching-Li Chai Samples of numbers More samples in §1. Examples of numbers arithemetic Congruent numbers Fermat’s infinite 2, the only even prime number. descent 30, the largest positive integer m such that every positive Counting solutions Zeta functions and integer between 2 and m and relatively prime to m is a their special values prime number. Modular forms and L-functions 3 3 3 3 1729 = 12 + 1 = 10 + 9 , Elliptic curves, complex the taxi cab number. As Ramanujan remarked to Hardy, multiplication and it is the smallest positive integer which can be expressed L-functions Weil conjecture and as a sum of two positive integers in two different ways.
    [Show full text]
  • Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
    Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ].
    [Show full text]
  • Math 788M: Computational Number Theory (Instructor’S Notes)
    Math 788M: Computational Number Theory (Instructor’s Notes) The Very Beginning: • A positive integer n can be written in n steps. • The role of numerals (now O(log n) steps) • Can we do better? (Example: The largest known prime contains 258716 digits and doesn’t take long to write down. It’s 2859433 − 1.) Running Time of Algorithms: • A positive integer n in base b contains [logb n] + 1 digits. • Big-Oh & Little-Oh Notation (as well as , , ∼, ) Examples 1: log (1 + (1/n)) = O(1/n) Examples 2: [logb n] + 1 log n Examples 3: 1 + 2 + ··· + n n2 These notes are for a course taught by Michael Filaseta in the Spring of 1996 and being updated for Fall of 2007. Computational Number Theory Notes 2 Examples 4: f a polynomial of degree k =⇒ f(n) = O(nk) Examples 5: (r + 1)π ∼ rπ • We will want algorithms to run quickly (in a small number of steps) in comparison to the length of the input. For example, we may ask, “How quickly can we factor a positive integer n?” One considers the length of the input n to be of order log n (corresponding to the number of binary digits n has). An algorithm runs in polynomial time if the number of steps it takes is bounded above by a polynomial in the length of the input. An algorithm to factor n in polynomial time would require that it take O (log n)k steps (and that it factor n). Addition and Subtraction (of n and m): • We are taught how to do binary addition and subtraction in O(log n + log m) steps.
    [Show full text]
  • Brahmagupta, Mathematician Par Excellence
    GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results.
    [Show full text]
  • Indian Mathematics
    Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician.
    [Show full text]
  • MAT344 Lecture 6
    MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1.
    [Show full text]
  • A Primer of Analytic Number Theory: from Pythagoras to Riemann Jeffrey Stopple Index More Information
    Cambridge University Press 0521813093 - A Primer of Analytic Number Theory: From Pythagoras to Riemann Jeffrey Stopple Index More information Index #, number of elements in a set, 101 and ␨(2n), 154–157 A =, Abel summation, 202, 204, 213 and Euler-Maclaurin summation, 220 definition, 201 definition, 149 Abel’s Theorem Bernoulli, Jacob, 146, 150, 152 I, 140, 145, 201, 267, 270, 272 Bessarion, Cardinal, 282 II, 143, 145, 198, 267, 270, 272, 318 binary quadratic forms, 270 absolute convergence definition, 296 applications, 133, 134, 139, 157, 167, 194, equivalence relation ∼, 296 198, 208, 215, 227, 236, 237, 266 reduced, 302 definition, 133 Birch Swinnerton-Dyer conjecture, xi, xii, abundant numbers, 27, 29, 31, 43, 54, 60, 61, 291–294, 326 82, 177, 334, 341, 353 Black Death, 43, 127 definition, 27 Blake, William, 216 Achilles, 125 Boccaccio’s Decameron, 281 aliquot parts, 27 Boethius, 28, 29, 43, 278 aliquot sequences, 335 Bombelli, Raphael, 282 amicable pairs, 32–35, 39, 43, 335 de Bouvelles, Charles, 61 definition, 334 Bradwardine, Thomas, 43, 127 ibn Qurra’s algorithm, 33 in Book of Genesis, 33 C2, twin prime constant, 182 amplitude, 237, 253 Cambyses, Persian emperor, 5 Analytic Class Number Formula, 273, 293, Cardano, Girolamo, 25, 282 311–315 Catalan-Dickson conjecture, 336 analytic continuation, 196 Cataldi, Pietro, 30, 333 Anderson, Laurie, ix cattle problem, 261–263 Apollonius, 261, 278 Chebyshev, Pafnuty, 105, 108 Archimedes, 20, 32, 92, 125, 180, 260, 285 Chinese Remainder Theorem, 259, 266, 307, area, basic properties, 89–91, 95, 137, 138, 308, 317 198, 205, 346 Cicero, 21 Aristotle’s Metaphysics,5,127 class number, see also h arithmetical function, 39 Clay Mathematics Institute, xi ∼, asymptotic, 64 comparison test Athena, 28 infinite series, 133 St.
    [Show full text]
  • The Prime Number Theorem a PRIMES Exposition
    The Prime Number Theorem A PRIMES Exposition Ishita Goluguri, Toyesh Jayaswal, Andrew Lee Mentor: Chengyang Shao TABLE OF CONTENTS 1 Introduction 2 Tools from Complex Analysis 3 Entire Functions 4 Hadamard Factorization Theorem 5 Riemann Zeta Function 6 Chebyshev Functions 7 Perron Formula 8 Prime Number Theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 2 Introduction • Euclid (300 BC): There are infinitely many primes • Legendre (1808): for primes less than 1,000,000: x π(x) ' log x © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 3 Progress on the Distribution of Prime Numbers • Euler: The product formula 1 X 1 Y 1 ζ(s) := = ns 1 − p−s n=1 p so (heuristically) Y 1 = log 1 1 − p−1 p • Chebyshev (1848-1850): if the ratio of π(x) and x= log x has a limit, it must be 1 • Riemann (1859): On the Number of Primes Less Than a Given Magnitude, related π(x) to the zeros of ζ(s) using complex analysis • Hadamard, de la Vallée Poussin (1896): Proved independently the prime number theorem by showing ζ(s) has no zeros of the form 1 + it, hence the celebrated prime number theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 4 Tools from Complex Analysis Theorem (Maximum Principle) Let Ω be a domain, and let f be holomorphic on Ω. (A) jf(z)j cannot attain its maximum inside Ω unless f is constant. (B) The real part of f cannot attain its maximum inside Ω unless f is a constant. Theorem (Jensen’s Inequality) Suppose f is holomorphic on the whole complex plane and f(0) = 1.
    [Show full text]
  • Rationale of the Chakravala Process of Jayadeva and Bhaskara Ii
    HISTORIA MATHEMATICA 2 (1975) , 167-184 RATIONALE OF THE CHAKRAVALA PROCESS OF JAYADEVA AND BHASKARA II BY CLAS-OLOF SELENIUS UNIVERSITY OF UPPSALA SUMMARIES The old Indian chakravala method for solving the Bhaskara-Pell equation or varga-prakrti x 2- Dy 2 = 1 is investigated and explained in detail. Previous mis- conceptions are corrected, for example that chakravgla, the short cut method bhavana included, corresponds to the quick-method of Fermat. The chakravala process corresponds to a half-regular best approximating algorithm of minimal length which has several deep minimization properties. The periodically appearing quantities (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, etc.) are correctly understood only with the new theory. Den fornindiska metoden cakravala att l~sa Bhaskara- Pell-ekvationen eller varga-prakrti x 2 - Dy 2 = 1 detaljunders~ks och f~rklaras h~r. Tidigare missuppfatt- 0 ningar r~ttas, sasom att cakravala, genv~gsmetoden bhavana inbegripen, motsvarade Fermats snabbmetod. Cakravalaprocessen motsvarar en halvregelbunden b~st- approximerande algoritm av minimal l~ngd med flera djupt liggande minimeringsegenskaper. De periodvis upptr~dande storheterna (jyestha-m~la, kanistha-mula, ksepaka, kuttakara, os~) blir forstaellga0. 0 . f~rst genom den nya teorin. Die alte indische Methode cakrav~la zur Lbsung der Bhaskara-Pell-Gleichung oder varga-prakrti x 2 - Dy 2 = 1 wird hier im einzelnen untersucht und erkl~rt. Fr~here Missverst~ndnisse werden aufgekl~rt, z.B. dass cakrav~la, einschliesslich der Richtwegmethode bhavana, der Fermat- schen Schnellmethode entspreche. Der cakravala-Prozess entspricht einem halbregelm~ssigen bestapproximierenden Algorithmus von minimaler L~nge und mit mehreren tief- liegenden Minimierungseigenschaften. Die periodisch auftretenden Quantit~ten (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, usw.) werden erst durch die neue Theorie verst~ndlich.
    [Show full text]
  • IJR-1, Mathematics for All ... Syed Samsul Alam
    January 31, 2015 [IISRR-International Journal of Research ] MATHEMATICS FOR ALL AND FOREVER Prof. Syed Samsul Alam Former Vice-Chancellor Alaih University, Kolkata, India; Former Professor & Head, Department of Mathematics, IIT Kharagpur; Ch. Md Koya chair Professor, Mahatma Gandhi University, Kottayam, Kerala , Dr. S. N. Alam Assistant Professor, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, India This article briefly summarizes the journey of mathematics. The subject is expanding at a fast rate Abstract and it sometimes makes it essential to look back into the history of this marvelous subject. The pillars of this subject and their contributions have been briefly studied here. Since early civilization, mathematics has helped mankind solve very complicated problems. Mathematics has been a common language which has united mankind. Mathematics has been the heart of our education system right from the school level. Creating interest in this subject and making it friendlier to students’ right from early ages is essential. Understanding the subject as well as its history are both equally important. This article briefly discusses the ancient, the medieval, and the present age of mathematics and some notable mathematicians who belonged to these periods. Mathematics is the abstract study of different areas that include, but not limited to, numbers, 1.Introduction quantity, space, structure, and change. In other words, it is the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. Mathematicians seek out patterns and formulate new conjectures. They resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity.
    [Show full text]
  • Code Library
    Code Library Himemiya Nanao @ Perfect Freeze September 13, 2013 Contents 1 Data Structure 1 1.1 atlantis .......................................... 1 1.2 binary indexed tree ................................... 3 1.3 COT ............................................ 4 1.4 hose ........................................... 7 1.5 Leist tree ........................................ 8 1.6 Network ......................................... 10 1.7 OTOCI ........................................... 16 1.8 picture .......................................... 19 1.9 Size Blanced Tree .................................... 22 1.10 sparse table - rectangle ................................. 27 1.11 sparse table - square ................................... 28 1.12 sparse table ....................................... 29 1.13 treap ........................................... 29 2 Geometry 32 2.1 3D ............................................. 32 2.2 3DCH ........................................... 36 2.3 circle's area ....................................... 40 2.4 circle ........................................... 44 2.5 closest point pair .................................... 45 2.6 half-plane intersection ................................. 49 2.7 intersection of circle and poly .............................. 52 2.8 k-d tree .......................................... 53 2.9 Manhattan MST ..................................... 56 2.10 rotating caliper ...................................... 60 2.11 shit ............................................ 63 2.12 other ..........................................
    [Show full text]