The Deranged Bell Numbers 2

Total Page:16

File Type:pdf, Size:1020Kb

The Deranged Bell Numbers 2 THE DERANGED BELL NUMBERS BELBACHIR HACENE,` DJEMMADA YAHIA, AND NEMETH´ LASZL` O` Abstract. It is known that the ordered Bell numbers count all the ordered partitions of the set [n] = {1, 2,...,n}. In this paper, we introduce the de- ranged Bell numbers that count the total number of deranged partitions of [n]. We first study the classical properties of these numbers (generating function, explicit formula, convolutions, etc.), we then present an asymptotic behavior of the deranged Bell numbers. Finally, we give some brief results for their r-versions. 1. Introduction A permutation σ of a finite set [n] := {1, 2,...,n} is a rearrangement (linear ordering) of the elements of [n], and we denote it by σ([n]) = σ(1)σ(2) ··· σ(n). A derangement is a permutation σ of [n] that verifies σ(i) 6= i for all (1 ≤ i ≤ n) (fixed-point-free permutation). The derangement number dn denotes the number of all derangements of the set [n]. A simple combinatorial approach yields the two recursions for dn (see for instance [13]) dn = (n − 1)(dn−1 + dn−2) (n ≥ 2) and n dn = ndn−1 + (−1) (n ≥ 1), with the first values d0 = 1 and d1 = 0. The derangement number satisfies the explicit expression (see [3]) n (−1)i d = n! . n i! i=0 X The generating function of the sequence dn is given by tn e−t D(t)= dn = . arXiv:2102.00139v1 [math.GM] 30 Jan 2021 n! 1 − t n≥ X0 The first few values of dn are (dn)n≥0 = {1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961,...}. For more details about derangement numbers we refer readers to [6, 13, 19] and the references therein. A partition of a set [n] := {1, 2,...,n} is a distribution of their elements to k non-empty disjoint subsets B1|B2| ... |Bk called blocks. We assume that the blocks are arranged in ascending order according to their minimum elements (min B1 < min B2 < ··· < min Bk). 2000 Mathematics Subject Classification. Primary: 11B73; Secondary: 05A18, 05A05. 1 THE DERANGED BELL NUMBERS 2 n It is well-known that the Stirling numbers of the second kind, denoted k , count the partitions’ number of the set [n] into k non-empty blocks. The numbers n k satisfy the recurrence n n − 1 n − 1 = + k (1 ≤ k ≤ n), k k − 1 k n n with 0 = δn,0 (Kronecker delta) and k = 0 (k>n). An ordered partition ψ of a set [n] is a permutation σ of the partition B1|B2| ... |Bk, in other words, we consider all the orders of the blocks, ψ([n]) = Bσ(1)|Bσ(2)| ... |Bσ(k). For notation, throughout this paper we represent the elements of the same block by adjacent numbers and we separate the blocks by bars ”|”. Example 1. The partitions of the set [3] = {1, 2, 3} are: 123;1|23;12|3;13|2; 1|2|3, and its ordered partitions are the permutations of all the partitions above: 123;1|23;23|1;12|3; 3|12;13|2; 2|13;1|2|3; 1|3|2; 2|1|3; 2|3|1; 3|1|2; 3|2|1. The total number of the ordered partitions of the set [n] is known as the ordered Bell number or Fubini number [7, 14], denoted by Fn, which is given by n n F = k! . n k k X=0 The first few values of the ordered Bell numbers are (Fn)n≥0 = {1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563,...}. The explicit formula for the Stirling number of the second kind k n 1 k = (−1)k−j jn k k! j j=0 X follows the explicit formula for the ordered Bell number n k k F = (−1)k−j jn. n j k j=0 X=0 X The exponential generating function for Fn is given by tn 1 (1.1) F(t)= F = . n n! 2 − et n≥ X0 We note that if the order of the blocks does not matter, then the total number of partitions of a set [n] is given by Bell numbers n n B = . n k k X=0 The exponential generating function for Bn is n t t (1.2) B(t)= B = ee −1. n n! n≥ X0 Most of the previous works focused on the some restrictions and generalizations of Stirling number of second kind to introduce new classes of ordered Bell number (see [5] and the references given there). THE DERANGED BELL NUMBERS 3 The aim of our paper is to introduce and study a new classes of ordered partitions numbers by taking into account the derangement of blocks (or permutations without fixed blocks). 2. The deranged Bell numbers In this section, we introduce the notion of deranged partition and we study the deranged Bell numbers. Definition 1. A deranged partition ψ˜ of the set [n] is a derangementσ ˜ of the partition B1|B2| ... |Bk, i.e., ˜ ψ([n]) = Bσ˜(1)|Bσ˜(2)| ... |Bσ˜(k) such that Bσ˜(i) 6= Bi for all (1 ≤ i ≤ k). Definition 2. Let F˜n be the deranged Bell number which counts the total number of the deranged partitions of the set [n]. Proposition 2.1. For all n ≥ 0 we have that n n (2.1) F˜ = d . n k k k X=0 n Proof. Since counts the number of partitions of [n] into k blocks, then the k n number of deranged partitions of [n] having k blocks is d (derangement of k k n n blocks). Therefore the nth deranged Bell number is F˜ = d . n k k k X=0 Here are the first few values of F˜n: (F˜n)n≥0 = {1, 0, 1, 5, 28, 199, 1721, 17394, 200803, 2607301, 37614922,...}. In Tables 1 and 2, we give few examples of the deranged permutations. Set Partition b1|b2| · · · |bk Deranged partitions F˜n 123 ∅ 1|23 23|1 {1,2,3} 12|3 3|12 5 13|2 2|13 1|2|3 2|3|1 3|1|2 Table 1. Deranged partitions of the set [3]. THE DERANGED BELL NUMBERS 4 Set Partition b1|b2| · · · |bk Deranged partitions F˜n 1234 ∅ 1|234 234|1 12|34 34|12 134|2 2|134 123|4 4|123 14|23 23|14 124|3 3|124 13|24 24|13 {1, 2, 3, 4} 1|2|34 2|34|1 34|1|2 28 1|23|4 23|4|1 4|1|23 1|24|3 24|3|1 3|1|24 12|3|4 3|4|12 4|12|3 13|2|4 2|4|13 4|13|2 14|2|3 2|3|14 3|14|2 2|1|4|3 2|3|4|1 2|4|1|3 1|2|3|4 3|1|4|2 3|4|1|2 3|4|2|1 4|1|2|3 4|3|1|2 4|3|2|1 Table 2. Deranged partitions of the set [4]. 3. Fundamental properties Here are the fundamental properties of the deranged Bell numbers. 3.1. Exponential generating function. Theorem 3.1. The exponential generating function of deranged Bell numbers is given by t tn e−(e −1) F˜(t)= F˜ = . n n! 2 − et n≥ X0 Proof. Denote by F˜(t) the exponential generating function of the sequence F˜n. From (2.1) we have n t n tn n tn (et − 1)k e−(e −1) F˜(t)= d = d = d = . k k n! k k n! k k! 2 − et n≥ k k≥ n≥ k≥ X0 X=0 X0 X0 X0 3.2. Explicit formula. Theorem 3.2. For any n ≥ 0, the sequence F˜n can be expressed explicitly as n k (−1)k+i−j k F˜ = jn. n i! j k i,j=0 X=0 X Proof. From the explicit formulas of Stirling numbers of the second kind and de- rangement number we have THE DERANGED BELL NUMBERS 5 n n k k n k n (−1)i 1 k (−1)k+i−j k F˜ = d = k! (−1)k−j jn = jn. n k k i! k! j i! j k k i=0 j=0 k i,j=0 X=0 X=0 X X X=0 X 3.3. Dobi`nski’s formula. One of the most important result for Bell number was established by Dobi`nski [8, 9, 17], where he expressed wn in the infinite series form bellow 1 kn w = . n e k! k≥ X0 An analogue result for the ordered Bell number was given by Gross [12] as 1 kn F = . n 2 2k k≥ X0 The Dobi`nski’s formula for F˜n is established by our next theorem Theorem 3.3. For any n ≥ 0 we have e (−1)j kn F˜ = . n 2 j! 2k−j j≥ k≥j X0 X Proof. From Theorem 3.1 it follows that t t tn e−(e −1) e e−e F˜ = = t n n! 1 − (et − 1) 2 e n≥ 1 − 2 X0 e (−1)kekt 1 k = ekt 2 k! 2 k≥ k≥ X0 X0 k e (−1)jejt 1 k−j = e(k−j)t 2 j! 2 k≥ j=0 X0 X k e (−1)j 1 k−j tn = kn 2 j! 2 n! n≥ k≥ j=0 X0 X0 X e (−1)j 1 k−j tn = kn , 2 j! 2 n! n≥ j≥ k≥j X0 X0 X tn by comparing the coefficient of n! we get e (−1)j kn F˜ = .
Recommended publications
  • Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
    Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ].
    [Show full text]
  • Labeled Factorization of Integers
    Labeled Factorization of Integers Augustine O. Munagi John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics, University of the Witwatersrand Wits 2050, Johannesburg, South Africa [email protected] Submitted: Jan 5, 2009; Accepted: Apr 16, 2009; Published: Apr 22, 2009 Mathematics Subject Classification: 11Y05, 05A05, 11B73, 11B13 Abstract The labeled factorizations of a positive integer n are obtained as a completion of the set of ordered factorizations of n. This follows a new technique for generating ordered factorizations found by extending a method for unordered factorizations that relies on partitioning the multiset of prime factors of n. Our results include explicit enumeration formulas and some combinatorial identities. It is proved that labeled factorizations of n are equinumerous with the systems of complementing subsets of {0, 1,...,n − 1}. We also give a new combinatorial interpretation of a class of generalized Stirling numbers. 1 Ordered and labeled factorization An ordered factorization of a positive integer n is a representation of n as an ordered product of integers, each factor greater than 1. The set of ordered factorizations of n will be denoted by F (n), and |F (n)| = f(n). For example, F (6) = {6, 2.3, 3.2}. So f(6) = 3. Every integer n> 1 has a canonical factorization into prime numbers p1,p2,..., namely m1 m2 mr n = p1 p2 ...pr , p1 <p2 < ··· <pr, mi > 0, 1 ≤ i ≤ r. (1) The enumeration function f(n) does not depend on the size of n but on the exponents mi. In particular we define Ω(n)= m1 + m2 + ··· + mr, Ω(1) = 0.
    [Show full text]
  • A Subspace Theorem for Manifolds
    A subspace theorem for manifolds Emmanuel Breuillard and Nicolas de Saxcé February 5, 2021 Abstract We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows. Introduction In 1972, Wolfgang Schmidt formulated his celebrated subspace theorem [32, Lemma 7], a far reaching generalization of results of Thue [37], Siegel [35], and Roth [28] on rational approximations to algebraic numbers. Around the same time, in his work on arithmeticity of lattices in Lie groups, Gregory Margulis [26] used the geometry of numbers to establish the recurrence of unipotent flows on the space of lattices GLd(R)=GLd(Z). More than two decades later, a quantita- tive refinement of this fact, the so-called quantitative non-divergence estimate, was used by Kleinbock and Margulis [18] in their solution to the Sprindzuk conjecture regarding the extremality of non-degenerate manifolds in metric dio- phantine approximation. As it turns out, these two remarkable results – the subspace theorem and the Sprindzuk conjecture – are closely related and can be understood together as statements about diagonal orbits in the space of lat- tices. In this paper we prove a theorem that generalizes both results at the same time. We also provide several applications. This marriage is possible thanks to a better understanding of the geometry lying behind the subspace theorem, in particular the notion of Harder-Narasimhan filtration for one-parameter di- agonal actions, which leads both to a dynamical reformulation of the original subspace theorem and to a further geometric understanding of the family of exceptional subspaces arising in Schmidt’s theorem.
    [Show full text]
  • MAT344 Lecture 6
    MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1.
    [Show full text]
  • Code Library
    Code Library Himemiya Nanao @ Perfect Freeze September 13, 2013 Contents 1 Data Structure 1 1.1 atlantis .......................................... 1 1.2 binary indexed tree ................................... 3 1.3 COT ............................................ 4 1.4 hose ........................................... 7 1.5 Leist tree ........................................ 8 1.6 Network ......................................... 10 1.7 OTOCI ........................................... 16 1.8 picture .......................................... 19 1.9 Size Blanced Tree .................................... 22 1.10 sparse table - rectangle ................................. 27 1.11 sparse table - square ................................... 28 1.12 sparse table ....................................... 29 1.13 treap ........................................... 29 2 Geometry 32 2.1 3D ............................................. 32 2.2 3DCH ........................................... 36 2.3 circle's area ....................................... 40 2.4 circle ........................................... 44 2.5 closest point pair .................................... 45 2.6 half-plane intersection ................................. 49 2.7 intersection of circle and poly .............................. 52 2.8 k-d tree .......................................... 53 2.9 Manhattan MST ..................................... 56 2.10 rotating caliper ...................................... 60 2.11 shit ............................................ 63 2.12 other ..........................................
    [Show full text]
  • Enciclopedia Matematica a Claselor De Numere Întregi
    THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS vol. I. NUMBER THEORY Marius Coman INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt. We quote from the introduction to the Smarandache’work “On new functions in number theory”, Moldova State University, Kishinev, 1999: “The performances in current mathematics, as the future discoveries, have, of course, their beginning in the oldest and the closest of philosophy branch of nathematics, the number theory. Mathematicians of all times have been, they still are, and they will be drawn to the beaty and variety of specific problems of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as Gauss said, the number theory is shining with its light and attractions, fascinating and facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”.
    [Show full text]
  • Identities Via Bell Matrix and Fibonacci Matrix
    Discrete Applied Mathematics 156 (2008) 2793–2803 www.elsevier.com/locate/dam Note Identities via Bell matrix and Fibonacci matrix Weiping Wanga,∗, Tianming Wanga,b a Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China b Department of Mathematics, Hainan Normal University, Haikou 571158, PR China Received 31 July 2006; received in revised form 3 September 2007; accepted 13 October 2007 Available online 21 February 2008 Abstract In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix. Moreover, based on the matrix representations, various identities are derived. c 2007 Elsevier B.V. All rights reserved. Keywords: Combinatorial identities; Fibonacci numbers; Generalized Fibonacci numbers; Bell polynomials; Iteration matrix 1. Introduction Recently, the lower triangular matrices have catalyzed many investigations. The Pascal matrix and several generalized Pascal matrices first received wide concern (see, e.g., [2,3,17,18]), and some other lower triangular matrices were also studied systematically, for example, the Lah matrix [14], the Stirling matrices of the first kind and of the second kind [5,6]. In this paper, we will study the Fibonacci matrix and the Bell matrix. Let us first consider a special n × n lower triangular matrix Sn which is defined by = 1, i j, (Sn)i, j = −1, i − 2 ≤ j ≤ i − 1, for i, j = 1, 2,..., n.
    [Show full text]
  • Tropical Moduli Space of Rational Graphically Stable Curves 3
    TROPICAL MODULI SPACE OF RATIONAL GRAPHICALLY STABLE CURVES ANDY FRY Abstract. We study moduli spaces of rational graphically stable tropical curves and a refinement given by radial alignment. Given a complete multipartite graph Γ, the moduli space of radially aligned Γ-stable tropical curves can be given the structure of a balanced fan. This fan structure coincides with the Bergman fan of the cycle matroid of Γ. 1. Introduction trop The moduli space M0,n is a cone complex which parameterizes leaf-labelled metric trees. Its structure is obtained by gluing positive orthants of Rn−3 corresponding to trivalent trees. Speyer and Sturmfels [14] give an embedding of this cone complex (in the context of phy- logenetic trees) into a real vector space as a balanced fan where each top-dimensional cone is assigned weight 1. In [1], Ardila and Klivans study phylogenetic trees and show that the trop fan structure of M0,n has a refinement which coincides with the Bergman fan of the cycle matroid of Kn−1, the complete graph on n − 1 vertices. As a generalization of Ardila and Klivans, it is shown by Cavalieri, Hampe, Markwig, and Ranganathan in [3] that the fan trop associated to the moduli space of rational heavy/light weighted stable tropical curves, M0,w , and the Bergman fan of a graphic matroid have the same support. The main result of this paper further generalizes their result by starting with stability conditions defined by a graph (reduced weight graph) rather than a weight vector. We trop introduce tropical rational graphically stable curves (Definition 3.12) and write M0,Γ as the moduli space of these curves.
    [Show full text]
  • Partial Metrics, Quasi-Metrics and Oriented Hypercubes
    General Weightable l1 Cones Hypercube Hamiltonian Sink References Partial Metrics, Quasi-metrics and Oriented Hypercubes Michel Deza Ecole Normale Superieure, Paris, and JAIST, Ishikawa General Weightable l1 Cones Hypercube Hamiltonian Sink References Overview 1 General quasi-semi-metrics 2 Weightable q-s-metrics and equivalent notions 3 l1 Quasi-metrics 4 The cones under consideration 5 Path quasi-metrics of oriented hypercubes 6 Hamiltonian orientations of hypercubes 7 Unique-sink orientations of hypercubes 8 References A weak quasi-metric is a quasi-semi-metric q with weak symmetry: q(x, y) = q(y, x) whenever q(y, x) = 0. An Albert quasi-metric is a quasi-semi-metric q with weak definiteness: x = y whenever q(x, y) = q(y, x) = 0. General Weightable l1 Cones Hypercube Hamiltonian Sink References Quasi-semi-metrics Given a set X , a function q : X × X → R≥0 with q(x, x)=0 is a quasi-distance (or, in Topology, prametric) on X . A quasi-distance q is a quasi-semi-metric if for x, y, z ∈ X it holds (oriented triangle inequality) q(x, y) ≤ q(x, z) + q(z, y) . q0 given by q0(x, y)=q(y, x) is dual quasi-semi-metric to q. (X , q) can be partially ordered by the specialization order: x y if and only if q(x, y)=0. Discrete quasi-metric on poset (X , ≤) is q≤(x, y)=0 if x y and =1 else; for (X , q≤), order coincides with ≤. General Weightable l1 Cones Hypercube Hamiltonian Sink References Quasi-semi-metrics Given a set X , a function q : X × X → R≥0 with q(x, x)=0 is a quasi-distance (or, in Topology, prametric) on X .
    [Show full text]
  • Hierarchical Structures and Leadership Design in Mean-Field-Type Games with Polynomial Cost
    games Article Hierarchical Structures and Leadership Design in Mean-Field-Type Games with Polynomial Cost Zahrate El Oula Frihi 1 , Julian Barreiro-Gomez 2,3,*, Salah Eddine Choutri 2,3 and Hamidou Tembine 2,3 1 Lab. of Probability and Statistics (LaPS), Department of Mathematics, Badji-Mokhtar University, B.P.12, Annaba 23000, Algeria; [email protected] 2 Learning & Game Theory Laboratory, Engineering Division, New York University Abu Dhabi, Saadiyat Campus, PO Box 129188, Abu Dhabi 44966, UAE; [email protected] (S.E.C.); [email protected] (H.T.) 3 Research Center on Stability, Instability and Turbulence, New York University Abu Dhabi, Abu Dhabi 44966, UAE * Correspondence: [email protected] Received: 8 June 2020; Accepted: 30 July 2020; Published: 6 August 2020 Abstract: This article presents a class of hierarchical mean-field-type games with multiple layers and non-quadratic polynomial costs. The decision-makers act in sequential order with informational differences. We first examine the single-layer case where each decision-maker does not have the information about the other control strategies. We derive the Nash mean-field-type equilibrium and cost in a linear state-and-mean-field feedback form by using a partial integro-differential system. Then, we examine the Stackelberg two-layer problem with multiple leaders and multiple followers. Numerical illustrations show that, in the symmetric case, having only one leader is not necessarily optimal for the total sum cost. Having too many leaders may also be suboptimal for the total sum cost. The methodology is extended to multi-level hierarchical systems. It is shown that the order of the play plays a key role in the total performance of the system.
    [Show full text]
  • Other Famous Numbers Due Friday, Week 4 UCSB 2014
    CCS Discrete Math I Professor: Padraic Bartlett Homework 7: Other Famous Numbers Due Friday, Week 4 UCSB 2014 Over the past week, we've studied the Catalan numbers, one of the most famous se- quences of integers in combinatorics. On this set, you'll study some other famous numbers! Each problem will introduce a class of numbers, and mention one or two interesting prop- erties which you are then invited to prove. Several problems here have extra-credit parts, or are extra-credit themselves. You do not need to do these parts to get full credit for the problem. Also, because these problems are all multi-part and this set came out a little late, we're asking you to do just two of these problems, instead of the usual three. Solve two of the five problems below! 1. Recall, from earlier in class, the definition of a partition of a set: Definition. Given any set S, a partition of S into n pieces is a way to write S as the union of n disjoint sets A1;:::An, such that all of the Ai sets are mutually disjoint (i.e. none of these sets overlap), none of the Ai are empty, and the union of all of them is our set S. For example, if S = f1; 2; 3; fish, 6; 7; 8g, a partition of S into three parts could be given by A1 = f1; 8g;A2 = ffishg;A3 = f2; 3; 6; 7g: We define the Bell number Bn as the number of different partitions of a set of n elements into any number of parts.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]