Grained Integers and Applications to Cryptography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80]. -
Labeled Factorization of Integers
Labeled Factorization of Integers Augustine O. Munagi John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics, University of the Witwatersrand Wits 2050, Johannesburg, South Africa [email protected] Submitted: Jan 5, 2009; Accepted: Apr 16, 2009; Published: Apr 22, 2009 Mathematics Subject Classification: 11Y05, 05A05, 11B73, 11B13 Abstract The labeled factorizations of a positive integer n are obtained as a completion of the set of ordered factorizations of n. This follows a new technique for generating ordered factorizations found by extending a method for unordered factorizations that relies on partitioning the multiset of prime factors of n. Our results include explicit enumeration formulas and some combinatorial identities. It is proved that labeled factorizations of n are equinumerous with the systems of complementing subsets of {0, 1,...,n − 1}. We also give a new combinatorial interpretation of a class of generalized Stirling numbers. 1 Ordered and labeled factorization An ordered factorization of a positive integer n is a representation of n as an ordered product of integers, each factor greater than 1. The set of ordered factorizations of n will be denoted by F (n), and |F (n)| = f(n). For example, F (6) = {6, 2.3, 3.2}. So f(6) = 3. Every integer n> 1 has a canonical factorization into prime numbers p1,p2,..., namely m1 m2 mr n = p1 p2 ...pr , p1 <p2 < ··· <pr, mi > 0, 1 ≤ i ≤ r. (1) The enumeration function f(n) does not depend on the size of n but on the exponents mi. In particular we define Ω(n)= m1 + m2 + ··· + mr, Ω(1) = 0. -
A Subspace Theorem for Manifolds
A subspace theorem for manifolds Emmanuel Breuillard and Nicolas de Saxcé February 5, 2021 Abstract We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows. Introduction In 1972, Wolfgang Schmidt formulated his celebrated subspace theorem [32, Lemma 7], a far reaching generalization of results of Thue [37], Siegel [35], and Roth [28] on rational approximations to algebraic numbers. Around the same time, in his work on arithmeticity of lattices in Lie groups, Gregory Margulis [26] used the geometry of numbers to establish the recurrence of unipotent flows on the space of lattices GLd(R)=GLd(Z). More than two decades later, a quantita- tive refinement of this fact, the so-called quantitative non-divergence estimate, was used by Kleinbock and Margulis [18] in their solution to the Sprindzuk conjecture regarding the extremality of non-degenerate manifolds in metric dio- phantine approximation. As it turns out, these two remarkable results – the subspace theorem and the Sprindzuk conjecture – are closely related and can be understood together as statements about diagonal orbits in the space of lat- tices. In this paper we prove a theorem that generalizes both results at the same time. We also provide several applications. This marriage is possible thanks to a better understanding of the geometry lying behind the subspace theorem, in particular the notion of Harder-Narasimhan filtration for one-parameter di- agonal actions, which leads both to a dynamical reformulation of the original subspace theorem and to a further geometric understanding of the family of exceptional subspaces arising in Schmidt’s theorem. -
FACTORING COMPOSITES TESTING PRIMES Amin Witno
WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret. -
The Pseudoprimes to 25 • 109
MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a. -
A Clasification of Known Root Prime-Generating
Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS). -
Arxiv:1412.5226V1 [Math.NT] 16 Dec 2014 Hoe 11
q-PSEUDOPRIMALITY: A NATURAL GENERALIZATION OF STRONG PSEUDOPRIMALITY JOHN H. CASTILLO, GILBERTO GARC´IA-PULGAR´IN, AND JUAN MIGUEL VELASQUEZ-SOTO´ Abstract. In this work we present a natural generalization of strong pseudoprime to base b, which we have called q-pseudoprime to base b. It allows us to present another way to define a Midy’s number to base b (overpseudoprime to base b). Besides, we count the bases b such that N is a q-probable prime base b and those ones such that N is a Midy’s number to base b. Furthemore, we prove that there is not a concept analogous to Carmichael numbers to q-probable prime to base b as with the concept of strong pseudoprimes to base b. 1. Introduction Recently, Grau et al. [7] gave a generalization of Pocklignton’s Theorem (also known as Proth’s Theorem) and Miller-Rabin primality test, it takes as reference some works of Berrizbeitia, [1, 2], where it is presented an extension to the concept of strong pseudoprime, called ω-primes. As Grau et al. said it is right, but its application is not too good because it is needed m-th primitive roots of unity, see [7, 12]. In [7], it is defined when an integer N is a p-strong probable prime base a, for p a prime divisor of N −1 and gcd(a, N) = 1. In a reading of that paper, we discovered that if a number N is a p-strong probable prime to base 2 for each p prime divisor of N − 1, it is actually a Midy’s number or a overpseu- doprime number to base 2. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
1 Abelian Group 266 Absolute Value 307 Addition Mod P 427 Additive
1 abelian group 266 certificate authority 280 absolute value 307 certificate of primality 405 addition mod P 427 characteristic equation 341, 347 additive identity 293, 497 characteristic of field 313 additive inverse 293 cheating xvi, 279, 280 adjoin root 425, 469 Chebycheff’s inequality 93 Advanced Encryption Standard Chebycheff’s theorem 193 (AES) 100, 106, 159 Chinese Remainder Theorem 214 affine cipher 13 chosen-plaintext attack xviii, 4, 14, algorithm xix, 150 141, 178 anagram 43, 98 cipher xvii Arithmetica key exchange 183 ciphertext xvii, 2 Artin group 185 ciphertext-only attack xviii, 4, 14, 142 ASCII xix classic block interleaver 56 asymmetric cipher xviii, 160 classical cipher xviii asynchronous cipher 99 code xvii Atlantic City algorithm 153 code-book attack 105 attack xviii common divisor 110 authentication 189, 288 common modulus attack 169 common multiple 110 baby-step giant-step 432 common words 32 Bell’s theorem 187 complex analysis 452 bijective 14, 486 complexity 149 binary search 489 composite function 487 binomial coefficient 19, 90, 200 compositeness test 264 birthday paradox 28, 389 composition of permutations 48 bit operation 149 compression permutation 102 block chaining 105 conditional probability 27 block cipher 98, 139 confusion 99, 101 block interleaver 56 congruence 130, 216 Blum integer 164 congruence class 130, 424 Blum–Blum–Shub generator 337 congruential generator 333 braid group 184 conjugacy problem 184 broadcast attack 170 contact method 44 brute force attack 3, 14 convolution product 237 bubble sort 490 coprime -
On Types of Elliptic Pseudoprimes
journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N. -
Enciclopedia Matematica a Claselor De Numere Întregi
THE MATH ENCYCLOPEDIA OF SMARANDACHE TYPE NOTIONS vol. I. NUMBER THEORY Marius Coman INTRODUCTION About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name), it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. Because this is too vast to be covered in one book, we divide encyclopedia in more volumes. In this first volume of encyclopedia we try to synthesize his work in the field of number theory, one of the great Smarandache’s passions, a surfer on the ocean of numbers, to paraphrase the title of the book Surfing on the ocean of numbers – a few Smarandache notions and similar topics, by Henry Ibstedt. We quote from the introduction to the Smarandache’work “On new functions in number theory”, Moldova State University, Kishinev, 1999: “The performances in current mathematics, as the future discoveries, have, of course, their beginning in the oldest and the closest of philosophy branch of nathematics, the number theory. Mathematicians of all times have been, they still are, and they will be drawn to the beaty and variety of specific problems of this branch of mathematics. Queen of mathematics, which is the queen of sciences, as Gauss said, the number theory is shining with its light and attractions, fascinating and facilitating for us the knowledge of the laws that govern the macrocosm and the microcosm”. -
Tropical Moduli Space of Rational Graphically Stable Curves 3
TROPICAL MODULI SPACE OF RATIONAL GRAPHICALLY STABLE CURVES ANDY FRY Abstract. We study moduli spaces of rational graphically stable tropical curves and a refinement given by radial alignment. Given a complete multipartite graph Γ, the moduli space of radially aligned Γ-stable tropical curves can be given the structure of a balanced fan. This fan structure coincides with the Bergman fan of the cycle matroid of Γ. 1. Introduction trop The moduli space M0,n is a cone complex which parameterizes leaf-labelled metric trees. Its structure is obtained by gluing positive orthants of Rn−3 corresponding to trivalent trees. Speyer and Sturmfels [14] give an embedding of this cone complex (in the context of phy- logenetic trees) into a real vector space as a balanced fan where each top-dimensional cone is assigned weight 1. In [1], Ardila and Klivans study phylogenetic trees and show that the trop fan structure of M0,n has a refinement which coincides with the Bergman fan of the cycle matroid of Kn−1, the complete graph on n − 1 vertices. As a generalization of Ardila and Klivans, it is shown by Cavalieri, Hampe, Markwig, and Ranganathan in [3] that the fan trop associated to the moduli space of rational heavy/light weighted stable tropical curves, M0,w , and the Bergman fan of a graphic matroid have the same support. The main result of this paper further generalizes their result by starting with stability conditions defined by a graph (reduced weight graph) rather than a weight vector. We trop introduce tropical rational graphically stable curves (Definition 3.12) and write M0,Γ as the moduli space of these curves.