Locacorten Vioform Ototoxicity Upon Guinea Pig Middle Ear Application

Total Page:16

File Type:pdf, Size:1020Kb

Locacorten Vioform Ototoxicity Upon Guinea Pig Middle Ear Application ORIGINAL ARTICLE J Audiol Otol 2018;22(2):75-79 pISSN 2384-1621 / eISSN 2384-1710 https://doi.org/10.7874/jao.2017.00199 Locacorten Vioform Ototoxicity Upon Guinea Pig Middle Ear Application Owen Woods and Issam Saliba Division of Otolaryngology-Head and Neck Surgery, Sainte-Justine University Hospital Center, University of Montreal, Montreal, Canada Background and Objectives: Locacorten Vioform (Novartis UK) is frequently prescribed for otomycosis. Its component, Clioquinol, also has anti-bacterial properties. Up to this point, its ototoxic potential has not been evaluated. Our objective aims to evaluate Locacorten Vio- form’s potential ototoxicity when applied directly to the middle ear cavity. Materials and Methods: We performed an experimental prospective animal study in our animal research center with 20 Hartley guinea pigs divided into 2 groups. The first group (experimental) was treated with Locacorten Vioform in one ear and with a physiologic saline solution in the other. The second group (positive control) was treated with concentrated gentamycin in one ear and physiologic saline in the other. Auditory brainstem response measurements were ob- Received July 28, 2017 tained before and after three sets of injections. Statistics were analyzed using a variance Revised November 20, 2017 analysis with repeated measures. The histological state of cochlear outer hair cells was com- Accepted December 5, 2017 pared between the two groups using scanning electron microscopy. Results: Average hear- Address for correspondence ing loss in ears treated with Locacorten Vioform was 32.1 dB, compared with a 2.5 dB aver- Issam Saliba, MD, FRCSC age loss in the saline-treated ears. Ears treated with gentamycin lost an average of 33.0 dB. Division of Otolaryngology- There were clinically and statistically significant differences between the two ears of the guin- Head and Neck Surgery, ea pigs in both groups (p<0.001). Scanning electron microscopy revealed severe perico- Sainte-Justine University chlear and cochlear inflammation and ossification in the Locacorten Vioform-treated ears. Hospital Center, Gentamycin caused significant destruction of outer hair cell architecture. Conclusions: Lo- University of Montreal, cacorten Vioform induces a hearing loss similar to that caused by gentamycin when applied 3175, Côte Sainte-Catherine, directly to the middle ear of a guinea pig model. Electron microscopy indicates a pericochlear Montréal (QC) H3T 1C5, Canada and cochlear inflammatory reaction with ossification. Tel +514-345-4857 J Audiol Otol 2018;22(2):75-79 Fax +514-507-9014 KEY WORDS:0 Locacorten Vioform · Gentamycin · Ototoxicity · Inner hair cell · Outer hair cell. E-mail [email protected] Introduction predisposes to otomycosis. Most patients present with unilat- eral ear pain and aural fullness, with possible persistent dis- Otomycosis is a common cause of otalgia and aural full- charge and mild hearing loss. Physical examination varies de- ness, particularly in patients recently treated with a topic anti- pending on the offending agent and extent of disease, but bacterial agent. It is defined as a fungal infection of the external typically reveals a white crust lining the external auditory ca- or middle ear, or of an open mastoid cavity. Patients with nal with a normal tympanic membrane (TM). Culture reveals’ chronic otitis media are at increased risk of developing otomy- Candida albicans, Candida parapsilosis, and Aspergillus fu- cosis. The use of topical quinolones has also been shown to migatus in 95% of cases [2]. When black crusts are identified, increase its prevalence [1]. Aspergillus infection should be suspected. Mainstay of treat- As with all fungal infections, a hot and humid environment ment consists of cleaning the infected ear, keeping it dry and applying topical antifungal cream or ointment. This is an Open Access article distributed under the terms of the Cre- ative Commons Attribution Non-Commercial License (http://creative- Not all antifungal agents are appropriate for otomycosis commons.org/licenses/by-nc/4.0/) which permits unrestricted non-com- treatment. Acetic acid and gentian violet have known ototoxic mercial use, distribution, and reproduction in any medium, provided the original work is properly cited. potential and should therefore be avoided [3,4]. Several alter- Copyright © 2018 The Korean Audiological Society and Korean Otological Society 75 Locacorten Vioform Ototoxicity in Guinea Pig native agents have proven their safety in animal studies, includ- was regulated to approximately 3-5% for induction and then ing ciclopirox, clotrimazole, miconazole, and nystatin [4-7]. approximately 1-3% for maintenance. In order to reduce hy- Locacorten Vioform (Novartis UK, London, UK) is a topi- pothermia related to anesthesia, we used a thermal support cal antifungal agent with three components: clioquinol, flu- until the animal is fully recovered from anesthesia [10]. All methasone and a polyethylene glycol vehicle. Its antibiotic manipulations, including middle ear injections and animal component, clioquinol, inhibits bacterial and fungal DNA sacrifice were performed under general anesthesia. The guin- structure and function [8]. Though studies report the use of Lo- ea pigs had spontaneous breathing but did not react to stimu- cacorten Vioform going as far back as 1966, no English-lan- lus. Auditory brainstem response (ABR) recordings required guage study has reported its efficacy or safety [9]. us to maintain anesthesia with a mask outside of the container. The goal of this study is to evaluate Locacorten Vioform’s Each animal’s adequate recovery from anesthesia was assured ototoxic potential when exposed to the middle ear of a guinea before leaving it unsupervised. pig model. Middle ear injections Materials and Methods We began our experiment with a microscopic evaluation of each guinea pig’s TM. Debris was cleared as needed. Each an- Animals imal then passed an ABR test within the first week. ABR pro- Twenty Hartley guinea pigs were included in our study. We tocol details are described below. prefer this species because of their accessible cochlea, their We then injected approximately 0.1 cc of the experimental functional anatomy which resembles that of humans, their solution into each ear, or enough to fill the middle ear cavity, widespread use in similar studies and finally because of our using a Whitacre spinal needle (BD, Middletown, NY, USA). experience with this species in our laboratory. Each injection as described above was repeated every second Animals were cared for in accordance with the guidelines of day for a total of three sets of injections. the Canadian Council of Animal Care. The study was ap- At this point we waited a total of two weeks before proceed- proved by our institutional review board and follows the stan- ing with further tests. This waiting time was considered nec- dards of the institutional animal care committee (c-461). essary in order to minimize the amount of residue present at the round window niche, which if considerable could inter- General procedures and group assignment fere with ABR readings as well as SEM analysis. The experiment was performed over eight weeks, begin- Our second ABR recordings were performed during week ning with group assignation and ending with scanning elec- 5. A thorough cleaning and drying of each ear was performed tron microscope (SEM) interpretation. the day before the recordings. It is important to note that all Each guinea pig was randomly assigned to one of two groups: TM were normal and no perforation was identified. an experimental group (group I) and a positive control group (group II). Animals from group I received Locacorten Vio- Auditory brainstem response form (flumethasone pivalate 0.02% and clioquinol 1%) injec- All ABR tests were performed with the same Nicolet Bra- tions in one randomly selected ear and physiological saline voTM device (Nicolet Bravo System; Nicolet Biomedical, (0.9% NaCl) injections in the other. Animals from group II Madison, WI, USA). The same room of the Experimental received gentamycin (40 mg/mL) injections in one randomly Surgery Center was used for all tests. Electrodes were insert- selected ear and physiological saline in the other. Each con- ed subcutaneously. The non-inverting electrodes were placed tralateral ear was thus used as a negative control, allowing us directly above the left and right mastoid processes, the in- to reduce the number of animals required and minimize the verting electrode was placed at the apex and the ground elec- impact of variability between animals. trode was placed in the middle of the animal’s back. Imped- ance was verified and accepted at values inferior to 3.0 kΩ. Anesthesia protocol We used tone burst stimuli emitted through TIP-300 (Bio- Anesthesia was induced by placing the animals in a plastic logic Corp., Madison, WI, USA) earphones to record differ- container with two entrance ports and one exit port. Oxygen ences across a range of frequencies. Tone bursts at 2000, and isoflurane 1% were administered in parallel systems and 4,000, 6,000, and 8,000 Hz were generated with condensation were ventilated out through the exit port. When animal was polarity. Amplitude thresholds were found to the nearest 5 dB. placed in the induction chamber and oxygen flowmeter ad- A total of 1,500 sweeps were averaged out with each recording. justed to approximately 0.5-1.0 L/min, isoflurane vaporizer To be considered a positive reading, a visible wave V needed to 76 J Audiol Otol 2018;22(2):75-79 Woods O, et al. be reproducible beyond a doubt on a minimum of two stimu- Auditory brainstem response lations with the same amplitude. ABR values are provided as absolute dB levels. Descriptive results Initial ABR testing yielded similar results between the two Animal sacrifice and preparation groups. Average threshold values across all tested frequen- All animals were sacrificed by guillotine under general an- cies ranged between 25.6±2.7 dB and 27.4±10.5 dB. After esthesia.
Recommended publications
  • BMC Ear, Nose and Throat Disorders Biomed Central
    BMC Ear, Nose and Throat Disorders BioMed Central Case report Open Access Acute unilateral hearing loss as an unusual presentation of cholesteatoma Daniel Thio*1, Shahzada K Ahmed2 and Richard C Bickerton3 Address: 1Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK, 2Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK and 3Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK Email: Daniel Thio* - [email protected]; Shahzada K Ahmed - [email protected]; Richard C Bickerton - [email protected] * Corresponding author Published: 18 September 2005 Received: 10 July 2005 Accepted: 18 September 2005 BMC Ear, Nose and Throat Disorders 2005, 5:9 doi:10.1186/1472-6815-5-9 This article is available from: http://www.biomedcentral.com/1472-6815/5/9 © 2005 Thio et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Cholesteatomas are epithelial cysts that contain desquamated keratin. Patients commonly present with progressive hearing loss and a chronically discharging ear. We report an unusual presentation of the disease with an acute hearing loss suffered immediately after prolonged use of a pneumatic drill. Case presentation: A 41 year old man with no previous history of ear problems presented with a sudden loss of hearing in his right ear immediately following the prolonged use of a pneumatic drill on concrete.
    [Show full text]
  • Bedside Neuro-Otological Examination and Interpretation of Commonly
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.054478 on 24 November 2004. Downloaded from BEDSIDE NEURO-OTOLOGICAL EXAMINATION AND INTERPRETATION iv32 OF COMMONLY USED INVESTIGATIONS RDavies J Neurol Neurosurg Psychiatry 2004;75(Suppl IV):iv32–iv44. doi: 10.1136/jnnp.2004.054478 he assessment of the patient with a neuro-otological problem is not a complex task if approached in a logical manner. It is best addressed by taking a comprehensive history, by a Tphysical examination that is directed towards detecting abnormalities of eye movements and abnormalities of gait, and also towards identifying any associated otological or neurological problems. This examination needs to be mindful of the factors that can compromise the value of the signs elicited, and the range of investigative techniques available. The majority of patients that present with neuro-otological symptoms do not have a space occupying lesion and the over reliance on imaging techniques is likely to miss more common conditions, such as benign paroxysmal positional vertigo (BPPV), or the failure to compensate following an acute unilateral labyrinthine event. The role of the neuro-otologist is to identify the site of the lesion, gather information that may lead to an aetiological diagnosis, and from there, to formulate a management plan. c BACKGROUND Balance is maintained through the integration at the brainstem level of information from the vestibular end organs, and the visual and proprioceptive sensory modalities. This processing takes place in the vestibular nuclei, with modulating influences from higher centres including the cerebellum, the extrapyramidal system, the cerebral cortex, and the contiguous reticular formation (fig 1).
    [Show full text]
  • Cochlear Implants in Unilateral Hearing Loss for Tinnitus Suppression
    Central Annals of Otolaryngology and Rhinology Review Article *Corresponding author Mohamed Salah Elgandy, Department of Otolaryngology-Head and Neck Surgery, University of Cochlear Implants in Unilateral Iowa hospital and clinics, 200 Hawkins drive, Iowa, Iowa City 52242.PFP 21167, USA, Tel; +1(319)519-3862; Email; Hearing Loss for Tinnitus Submitted: 19 January 2019 Accepted: 06 February 2019 Suppression Published: 08 February 2019 ISSN: 2379-948X 1,2 2,3 Mohamed Salah Elgandy *and Richard S. Tyler Copyright 1Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt © 2019 Elgandy et al. 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, USA 3Department of Communication Sciences and Disorders, University of Iowa, USA OPEN ACCESS Keywords Abstract • Unilateral hearing loss Tinnitus is a pervasive symptom that can affect many people with hearing loss. • Tinnitus It is found that its incidence is increasing due to accompanying occupational and • Electrical stimulation environmental noise. Even, there is no standard treatment is present up till now, but • Cochlear implants cochlear implants (CIs) positive effects are well proven and documented. This article provides an overview of many publicly available reports about cochlear implants and tinnitus, with review of several articles demonstrating the benefit of cochlear implants for unilateral hearing loss and tinnitus. We believe that this approach will help many, and should be considered as standard practice and reimbursed. INTRODUCTION An increase in rate. Unilateral hearing loss affecting approximately18.1 million • Decrease in rate persons in the United States [1]. Patients with unilateral deafness • Periodic activity frequently also experience tinnitus, which can have a profound • Synchronous activity cross neurons has been associated with an increased incidence of depression, impact on an individual’s quality of life.
    [Show full text]
  • 32 3. UNADDRESSED HEARING PROBLEMS This Section Contains
    3. UNADDRESSED HEARING PROBLEMS This section contains: a description of the types of hearing problems that affect children; the prevalence of hearing problems; unmet needs for hearing screening, diagnosis and treatment; and evidence on the learning consequences of unaddressed hearing problems. Definitions Normal hearing was defined in 1965 by the American Academy of Ophthalmology and Otolaryngology (AAOO) as any hearing loss up to 26 dB. This level of hearing loss is the point at which an individual begins to find it difficult to understand typical speech in a quiet environment. The AAOO guidelines around normal hearing have not changed since this cutoff was established and are supported by the American Medical Association and the American Academy of Audiology. Hearing deficits are categorized and defined in various ways, and there is variation in defining levels of hearing loss across countries, states, and health care providers. There are no widely agreed upon definitions for all types and levels of hearing loss. The American Speech-Language-Hearing Association (ASHA) categorizes and defines hearing loss primarily by type, degree, and configuration.103 Type of Hearing Loss (as defined by ASHA) ● Sensorineural hearing loss (SNHL) is the most common type of permanent hearing loss and “happens when there is damage to the inner ear (cochlea) or to the nerve pathways from the inner ear to the brain.” Audible speech may be unclear or sound muffled. This type of hearing loss can usually not be corrected with medical treatment or surgery. SNHL can be caused by: ○ Drugs that are toxic to hearing ○ Hearing loss that runs in the family (genetic or hereditary) ○ Head trauma ○ Malformation of the inner ear ○ Exposure to loud noise ● Conductive hearing loss “occurs when sound is not sent easily through the outer ear canal to the eardrum and the tiny bones (ossicles) of the middle ear.” Sounds will seem softer and less easy to hear.
    [Show full text]
  • A Unilateral Cochlear Implant for Tinnitus
    REVIEW PAPER DOI: 10.5935/0946-5448.20180022 International Tinnitus Journal. 2018;22(2):128-132. A Unilateral Cochlear Implant for Tinnitus Mohamed Salah Elgandy1 Richard Tyler2,3 Camille Dunn2 Marlan Hansen2 Bruce Gantz2 Abstract In recent years a growing number of Patients with unilateral hearing loss have been undergoing cochlear implantation. We provide an overview of the efficacy of cochlear implants (CIs) to rehabilitate patients with unilateral deafness with regards to sound localization, speech recognition, and tinnitus. Although CI is not yet an FDA-approved treatment for unilateral deafness, several recent studies show improvements in speech understanding, sound localization, and tinnitus. Based on encouraging results and the unique ability to restore binaural sound processing, the benefits to many as an aid to their tinnitus, we argue that CIs should be offered as a treatment for unilateral deafness. Keywords: hearing loss, tinnitus, electrical stimulation, cochlear implants. 1Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, USA 3Department of Communication Sciences and Disorders, University of Iowa, Iowa City, USA Send correspondence to: Mohamed Salah Elgandy Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt. E-mail: [email protected] Paper submitted to the ITJ-EM (Editorial Manager System) on August 30, 2018; and accepted on September 10, 2018. International Tinnitus Journal, Vol. 22, No 2 (2018) 128 www.tinnitusjournal.com INTRODUCTION disturbances. It is important to note that the therapy in these situations is for depression and anxiety, not tinnitus. Unilateral hearing loss implies a profound sensori- neural hearing loss in one ear and no greater than a mild As with any bothersome, common disorder that lacks hearing loss in the opposite ear.
    [Show full text]
  • A Giant Cholesteatoma of the Mastoid Extending Into the Foramen
    Neurology International 2018; volume 10:7625 A giant cholesteatoma of the mastoid extending into Introduction Correspondence: Yuekang Zhang, Department of Neurosurgery, Post Graduate Training the foramen magnum: Cholesteatomas are benign, slowly pro- Centre, West China Hospital, Sichuan gressive lesions that are usually found in the University; 37 Guo Xue Xiang Road, A case report and review 1-5 temporal bone. They are epidermoid Chengdu, Sichuan 610041, P.R. China. of literature cysts of embryologic origin that result in Tel.: +86.18980601975 - Fax: +86.02885422490. progressive desquamation and trapping of E-mail: [email protected] Seidu A. Richard,1-3 Li Qiang,1 squamous epithelium behind an intact tym- panic membrane.6 They can be congenital Key words: Cholesteatoma, Case report, Zhi Gang Lan,1 Yuekang Zhang,1 or acquired.1,4,5 They can be classified into Dizziness, Epidermoid Cyst, Hearing loss, Chao You1 supralabyrinthine, infralabyrinthine, mas- Tinnitus. 1Department of Neurosurgery, West sive labyrinthine, infralabyrinthine-apical, Contributions: SAR conceived the project and and apical.1,4 They have the penchant for China Hospital, Sichuan University, designed the study; SAR, LQ and ZQL col- 2 China; Department of Immunology, the petrous apex, skull base, and internal lected patient’s data; YZ and CY provided Jiangsu University, China; 3Department auditory canal. Also, these lesions may technical assistance in the study; SAR pre- of Surgery, Volta Regional Hospital, Ho, infiltrate other vital soft tissue structures pared the illustration, analyzed data and wrote such as the sigmoid sinus, jugular vein and Ghana the paper. artery, and the cerebellopontine angle.1,4,5 Symptoms associated with cholesteatomas Conflict of interest: the authors declare no includes vertigo, tinnitus, otorrhea, and potential conflict of interest.
    [Show full text]
  • Research Dissertation Title: the Pattern of Hearing Loss As Seen at the University of Benin Teaching Hospital, Benin City
    RESEARCH DISSERTATION TITLE: THE PATTERN OF HEARING LOSS AS SEEN AT THE UNIVERSITY OF BENIN TEACHING HOSPITAL, BENIN CITY. BY DR. PAUL R O C ADOBAMEN ADDRESS: ENT UNIT, DEPARTMENT OF SURGERY, UBTH, BENIN CITY. A RESEARCH DISSERTATION, SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF FMCORL OF THE NATIONAL POST GRADUATE MEDICAL COLLEGE OF NIGERIA. MAY 2006. 1 CANDIDATE’S DECLARATION I, Dr. Adobamen P R O C hereby declare that: “The pattern of hearing loss as seen at the University of Benin Teaching Hospital, Benin City”; - Is an original prospective work done by me as the sole author and assistance received is duly acknowledged. - This work has not been previously submitted either in part or in full to any other College for a Fellowship nor has it been submitted elsewhere for publication. SIGNATURE------------------------ DATE------------------------------- 2 CERTIFICATION This study titled: “The pattern of hearing loss as seen at the University of Benin Teaching Hospital (UBTH), Benin City” was done by Dr. Adobamen P R O C under our supervision. We also supervised the writing of this dissertation. 1. NAME: Prof. F O Ogisi. FRCS, FICS, FWACS, FMCORL, DLO. STATUS: CONSULTANT OTORHINOLARYNGOLOGIST, HEAD AND NECK SURGEON, PROFESSOR. ADDRESS: DEPARTMENT OF SURGERY, U. B. T. H., BENIN CITY, NIGERIA. SIGNATURE:------------------------------------------------------ DATE:------------------------------------------------------------ 2. NAME: PROF B C EZEANOLUE. FMCORL, FWACS, FICS STATUS: CONSULTANT OTORHINOLARYNGOLOGIST, HEAD AND NECK SURGEON, ASSOCIATE. PROFESSOR. ADDRESS: DEPARTMENT OF OTOLARYNGOLOGY, U.N.T.H., ENUGU, NIGERIA. SIGNATURE:------------------------------------------------------ DATE:------------------------------------------------------------ 3 DEDICATION This book is dedicated to the bride of Jesus Christ; for their gallant stand for the Word of God.
    [Show full text]
  • Hearing Loss and Auditory Disorders: Outside the Clinic
    Hollea Ryan, Au.D., Ph.D., CCC-A Audiology Program Director, Samford University Bethany Wenger, Au.D., CCC-A Pediatric Audiologist, Vanderbilt University Disclaimers • Hollea Ryan is employed by Samford University and receives financial compensation for her work. No conflict of interest exists for this presentation. • Bethany Wenger is employed by Vanderbilt University Medical Center and receives financial compensation for her work. She has previously worked as a consultant for a hearing protection device company and was financially compensated. No conflict of interest exists for this presentation. Hearing Loss and Auditory Disorders:Hearing Loss Outside and Auditorythe Clinic Disorders: Outside the Clinic AGENDA • Unilateral Hearing Loss • Minimal (Bilateral) Hearing Loss • Auditory Disorders • Non-clinical Settings • Noise-Induced Hearing Loss Learning Objectives At the completion of this presentation, the participant will be able to: 1) Detail current research findings regarding children with minimal hearing loss and/or noise-induced hearing loss. 2) Identify non-academic settings in which children with hearing loss struggle. 3) Summarize various treatment options for children with hearing loss that improve communication, academic performance, and/or quality of life. What the Literature is Indicating about Minimal/Unilateral Hearing Loss Hearing Care Practices Before and After UNHS (Fitzpatrick, Whittingham, & Durieux-Smith, 2013; Fitzpatrick, Durieux-Smith, & Whittingham, 2010) • Retrospectively evaluated 20 years of history related
    [Show full text]
  • Glossary the Following List of Terms May Be Useful to You As You Are Learning About Hearing Loss
    glossary The following list of terms may be useful to you as you are learning about hearing loss. For a comprehensive explanation please refer to the Choices booklet. This will give you detailed information on hearing loss, amplification and communication options. Semicircular canals Hammer Anvil 4. Then the auditory nerve takes the message to the brain. Outer ear Stirrup 1. The sound makes the eardrum vibrate Cochlea Inner ear Sound waves . The bones make the 2. The eardrum makes 3 fluid move and the hair the bones vibrate cells bend. Ear drum Middle ear Eustachian tube to the throat a Acoustic nerve / auditory nerve Atresia / aural atresia The acoustic nerve is a combination of the nerves Aural atresia involves some degree of failure of of hearing (the cochlear nerve) and balance (the development of the ear canal. It can also affect the vestibular nerve). The cochlear nerve carries ear drum (tympanic membrane), the tiny bones in the information about hearing to the brain, and the middle ear (ossicles), and the middle ear space. The vestibular nerve carries messages about balance pinna (outer ear) is often also affected, but the inner to the brain (see diagram above). ear (cochlea) is not usually affected. Aural atresia most commonly occurs in one ear only, but can also Acquired hearing loss / deafness occur in both ears. See ‘hearing loss, acquired’. Audiogram Amplification An audiogram is a chart used to show the results of Amplification is any process that makes a sound a hearing test. It shows what level of loudness a child louder. Hearing aids are an example of a device used can hear sounds of different pitches at.
    [Show full text]
  • Differential Diagnosis and Treatment of Hearing Loss JON E
    Differential Diagnosis and Treatment of Hearing Loss JON E. ISAACSON, M.D., and NEIL M. VORA, M.D., Milton S. Hershey Medical Center, Hershey, Pennsylvania Hearing loss is a common problem that can occur at any age and makes verbal communication difficult. The ear is divided anatomically into three sections (external, middle, and inner), and pathology contributing to hearing loss may strike one or more sections. Hearing loss can be cat- egorized as conductive, sensorineural, or both. Leading causes of conductive hearing loss include cerumen impaction, otitis media, and otosclerosis. Leading causes of sensorineural hear- ing loss include inherited disorders, noise exposure, and presbycusis. An understanding of the indications for medical management, surgical treatment, and amplification can help the family physician provide more effective care for these patients. (Am Fam Physician 2003;68:1125-32. Copyright© 2003 American Academy of Family Physicians) ore than 28 million Amer- tive, the sound will be heard best in the icans have some degree of affected ear. If the loss is sensorineural, the hearing impairment. The sound will be heard best in the normal ear. differential diagnosis of The sound remains midline in patients with hearing loss can be sim- normal hearing. Mplified by considering the three major cate- The Rinne test compares air conduction gories of loss. Conductive hearing loss occurs with bone conduction. The tuning fork is when sound conduction is impeded through struck softly and placed on the mastoid bone the external ear, the middle ear, or both. Sen- (bone conduction). When the patient no sorineural hearing loss occurs when there is a longer can hear the sound, the tuning fork is problem within the cochlea or the neural placed adjacent to the ear canal (air conduc- pathway to the auditory cortex.
    [Show full text]
  • Unilateral Hearing Loss: Outcomes
    UNILATERAL HEARING LOSS: OUTCOMES RECRUIT- CASE ASSESSMENT AUTHOR’S REFERENCE DESIGN MENT DEFINITION SUBJECTS TOOLS RESULTS CONCLUSIONS Bess F, Case history 60 children Only selection Total tested: Comprehensive Only 23% of children with Most important Tharpe A. data with UHL* criteria used: N = 60 with medical and UHL were identified before finding was half Case history examined in 3 from mid- UHL. educational age 5 (Mean = 5.68 years). of the children data on ways: Tennessee An audiogram case histories showed problems unilaterally region. obtained by an Subsample of Approximately 50% of 60 in educational hearing- Total group of audiologist. 25 children showed some difficulty in progress. impaired children. who satisfied educational progress. children. Ear SNHL* loss of more Results indicated 35% failed at least one Hear. 1986; Close ≥45 dB* (.5, 1, stringent st a need to re­ 7(1):14–9. examination 2 kHz*) in criteria. grade (most failed 1 assess these of subgroup of poorer ear and grade, although half failed children’s needs. 25 children. ≤15 dB in Group of 8 higher grades). better ear. academically 13.3% were in need of Close unsuccessful some special resource examination No experience children from assistance. of 8 with the group of academically amplification. 25. All children received unsuccessful classroom seating children from Aged 6–18 preference. the group of years. 25. 20% described by teachers as having behavioral problems. Similar finding obtained on a subset of 25 children with UHL that satisfied more stringent criteria. Small group of 8 academically unsuccessful children: Half had a right ear loss–repeated 1st grade due to “immaturity” or “hyperactivity.” Data from metro-Nashville public schools: 3.5% of children in grades K–6 failed one or more grades.
    [Show full text]
  • Factors Potentially Affecting the Hearing of Petroleum Industry Workers
    report no. 5/05 factors potentially affecting the hearing of petroleum industry workers Prepared for CONCAWE’s Health Management Group by: P. Hoet M. Grosjean Unité de toxicologie industrielle et pathologie professionnelle Ecole de santé publique Faculté de médecine Université catholique de Louvain (Belgium) C. Somaruga School of Occupational Health University of Milan (Italy) Reproduction permitted with due acknowledgement © CONCAWE Brussels June 2005 I report no. 5/05 ABSTRACT This report aims at giving an overview of the various factors that may influence the hearing of petroleum industry workers, including the issue of ‘ototoxic’ chemical exposure. It also provides guidance for occupational physicians on factors that need to be considered as part of health management programmes. KEYWORDS hearing, petroleum industry, hearing loss, audiometry, ototoxicity, chemicals INTERNET This report is available as an Adobe pdf file on the CONCAWE website (www.concawe.org). NOTE Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither CONCAWE nor any company participating in CONCAWE can accept liability for any loss, damage or injury whatsoever resulting from the use of this information. This report does not necessarily represent the views of any company participating in CONCAWE. II report no. 5/05 CONTENTS Page SUMMARY IV 1. INTRODUCTION 1 2. HEARING, MECHANISMS AND TYPES OF HEARING LOSS 3 2.1. PHYSIOLOGY OF HEARING: HEARING BASICS 3 2.2. MECHANISMS AND TYPES OF HEARING LOSS 4 2.2.1. Transmission or conduction hearing loss 4 2.2.2. Sensorineural hearing loss 5 2.3. EVALUATION OF HEARING LOSS 6 3.
    [Show full text]