Fitting Strategies for Patients with Unilateral Hearing Loss
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Head-Related Transfer Functions and Virtual Auditory Display
Chapter 6 Head-Related Transfer Functions and Virtual Auditory Display Xiao-li Zhong and Bo-sun Xie Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56907 1. Introduction 1.1. Sound source localization and HRTFs In real environments, wave radiated by sound sources propagates to a listener by direct and reflected paths. The scattering, diffraction and reflection effect of the listener’s anatomical structures (such as head, torso and pinnae) further disturb the sound field and thereby modify the sound pressures received by the two ears. Human hearing comprehen‐ sively utilizes the information encoded in binaural pressures and then forms various spatial auditory experiences, such as sound source localization and subjective perceptions of environmental reflections. Psychoacoustic experiments have proved that the following cues encoded in the binaural pressures contribute to directional localization [1]: 1. The interaural time difference (ITD), i.e., the arrival time difference between the sound waves at left and right ears, is the dominant directional localization cue for frequencies approximately below 1.5 kHz. 2. The interaural level difference (ILD), i.e., the pressure level difference between left and right ears caused by scattering and diffraction of head etc., is the important directional localization cue for frequencies approximately above 1.5 kHz. 3. The spectral cues encoded in the pressure spectra at ears, which are caused by the scattering, diffraction, and reflection of anatomical structures. In particular, the pinna- caused high-frequency spectral cue above 5 to 6 kHz is crucial to front-back disambiguity and vertical localization. © 2014 The Author(s). -
BMC Ear, Nose and Throat Disorders Biomed Central
BMC Ear, Nose and Throat Disorders BioMed Central Case report Open Access Acute unilateral hearing loss as an unusual presentation of cholesteatoma Daniel Thio*1, Shahzada K Ahmed2 and Richard C Bickerton3 Address: 1Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK, 2Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK and 3Department of Otorhinolaryngology, South Warwickshire General Hospitals NHS Trust Warwick CV34 5BW UK Email: Daniel Thio* - [email protected]; Shahzada K Ahmed - [email protected]; Richard C Bickerton - [email protected] * Corresponding author Published: 18 September 2005 Received: 10 July 2005 Accepted: 18 September 2005 BMC Ear, Nose and Throat Disorders 2005, 5:9 doi:10.1186/1472-6815-5-9 This article is available from: http://www.biomedcentral.com/1472-6815/5/9 © 2005 Thio et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Cholesteatomas are epithelial cysts that contain desquamated keratin. Patients commonly present with progressive hearing loss and a chronically discharging ear. We report an unusual presentation of the disease with an acute hearing loss suffered immediately after prolonged use of a pneumatic drill. Case presentation: A 41 year old man with no previous history of ear problems presented with a sudden loss of hearing in his right ear immediately following the prolonged use of a pneumatic drill on concrete. -
Signal Processing in High-End Hearing Aids: State of the Art, Challenges, and Future Trends
EURASIP Journal on Applied Signal Processing 2005:18, 2915–2929 c 2005 V. Hamacher et al. Signal Processing in High-End Hearing Aids: State of the Art, Challenges, and Future Trends V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass Siemens Audiological Engineering Group, Gebbertstrasse 125, 91058 Erlangen, Germany Emails: [email protected], [email protected], [email protected], eghart.fi[email protected], [email protected], [email protected], [email protected] Received 30 April 2004; Revised 18 September 2004 The development of hearing aids incorporates two aspects, namely, the audiological and the technical point of view. The former focuses on items like the recruitment phenomenon, the speech intelligibility of hearing-impaired persons, or just on the question of hearing comfort. Concerning these subjects, different algorithms intending to improve the hearing ability are presented in this paper. These are automatic gain controls, directional microphones, and noise reduction algorithms. Besides the audiological point of view, there are several purely technical problems which have to be solved. An important one is the acoustic feedback. Another instance is the proper automatic control of all hearing aid components by means of a classification unit. In addition to an overview of state-of-the-art algorithms, this paper focuses on future trends. Keywords and phrases: digital hearing aid, directional microphone, noise reduction, acoustic feedback, classification, compres- sion. 1. INTRODUCTION being close to each other. Details regarding this problem and possible solutions are discussed in Section 5. Note that Driven by the continuous progress in the semiconductor feedback suppression can be applied at different stages of technology, today’s high-end digital hearing aids offer pow- the signal flow dependent on the chosen strategy. -
Bimodal Hearing Or Bilateral Cochlear Implants: a Review of the Research Literature
Bimodal Hearing or Bilateral Cochlear Implants: A Review of the Research Literature Carol A. Sammeth, Ph.D.,1,2 Sean M. Bundy,1 and Douglas A. Miller, M.S.E.E.3 ABSTRACT Over the past 10 years, there have been an increasing number of patients fitted with either bimodal hearing devices (unilateral cochlear implant [CI], and hearing aid on the other ear) or bilateral cochlear implants. Concurrently, there has been an increasing interest in and number of publications on these topics. This article reviews the now fairly voluminous research literature on bimodal hearing and bilateral cochlear implantation in both children and adults. The emphasis of this review is on more recent clinical studies that represent current technology and that evaluated speech recognition in quiet and noise, localization ability, and perceived benefit. A vast majority of bilaterally deaf subjects in these studies showed benefit in one or more areas from bilateral CIs compared with listening with only a unilateral CI. For patients who have sufficient residual low-frequency hearing sensitivity for the provision of amplification in the nonimplanted ear, bimodal hearing appears to provide a good nonsurgical alternative to bilateral CIs or to unilateral listening for many patients. KEYWORDS: Bimodal hearing, bimodal devices, bilateral cochlear Downloaded by: SASLHA. Copyrighted material. implants, binaural hearing Learning Outcomes: As a result of this activity, the participant will be able to (1) compare possible benefits of bimodal hearing versus bilateral cochlear implantation based on current research, and (2) identify when to consider fitting of bimodal hearing devices or bilateral cochlear implants. Multichannel cochlear implants (CIs) tion for persons with hearing loss that is too have proven to be a highly successful interven- severe for good performance with conventional 1Cochlear Americas, Centennial, Colorado; 2Division of Centennial, CO 80111 (e-mail: [email protected]). -
Bedside Neuro-Otological Examination and Interpretation of Commonly
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.054478 on 24 November 2004. Downloaded from BEDSIDE NEURO-OTOLOGICAL EXAMINATION AND INTERPRETATION iv32 OF COMMONLY USED INVESTIGATIONS RDavies J Neurol Neurosurg Psychiatry 2004;75(Suppl IV):iv32–iv44. doi: 10.1136/jnnp.2004.054478 he assessment of the patient with a neuro-otological problem is not a complex task if approached in a logical manner. It is best addressed by taking a comprehensive history, by a Tphysical examination that is directed towards detecting abnormalities of eye movements and abnormalities of gait, and also towards identifying any associated otological or neurological problems. This examination needs to be mindful of the factors that can compromise the value of the signs elicited, and the range of investigative techniques available. The majority of patients that present with neuro-otological symptoms do not have a space occupying lesion and the over reliance on imaging techniques is likely to miss more common conditions, such as benign paroxysmal positional vertigo (BPPV), or the failure to compensate following an acute unilateral labyrinthine event. The role of the neuro-otologist is to identify the site of the lesion, gather information that may lead to an aetiological diagnosis, and from there, to formulate a management plan. c BACKGROUND Balance is maintained through the integration at the brainstem level of information from the vestibular end organs, and the visual and proprioceptive sensory modalities. This processing takes place in the vestibular nuclei, with modulating influences from higher centres including the cerebellum, the extrapyramidal system, the cerebral cortex, and the contiguous reticular formation (fig 1). -
Cochlear Implants in Unilateral Hearing Loss for Tinnitus Suppression
Central Annals of Otolaryngology and Rhinology Review Article *Corresponding author Mohamed Salah Elgandy, Department of Otolaryngology-Head and Neck Surgery, University of Cochlear Implants in Unilateral Iowa hospital and clinics, 200 Hawkins drive, Iowa, Iowa City 52242.PFP 21167, USA, Tel; +1(319)519-3862; Email; Hearing Loss for Tinnitus Submitted: 19 January 2019 Accepted: 06 February 2019 Suppression Published: 08 February 2019 ISSN: 2379-948X 1,2 2,3 Mohamed Salah Elgandy *and Richard S. Tyler Copyright 1Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt © 2019 Elgandy et al. 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, USA 3Department of Communication Sciences and Disorders, University of Iowa, USA OPEN ACCESS Keywords Abstract • Unilateral hearing loss Tinnitus is a pervasive symptom that can affect many people with hearing loss. • Tinnitus It is found that its incidence is increasing due to accompanying occupational and • Electrical stimulation environmental noise. Even, there is no standard treatment is present up till now, but • Cochlear implants cochlear implants (CIs) positive effects are well proven and documented. This article provides an overview of many publicly available reports about cochlear implants and tinnitus, with review of several articles demonstrating the benefit of cochlear implants for unilateral hearing loss and tinnitus. We believe that this approach will help many, and should be considered as standard practice and reimbursed. INTRODUCTION An increase in rate. Unilateral hearing loss affecting approximately18.1 million • Decrease in rate persons in the United States [1]. Patients with unilateral deafness • Periodic activity frequently also experience tinnitus, which can have a profound • Synchronous activity cross neurons has been associated with an increased incidence of depression, impact on an individual’s quality of life. -
32 3. UNADDRESSED HEARING PROBLEMS This Section Contains
3. UNADDRESSED HEARING PROBLEMS This section contains: a description of the types of hearing problems that affect children; the prevalence of hearing problems; unmet needs for hearing screening, diagnosis and treatment; and evidence on the learning consequences of unaddressed hearing problems. Definitions Normal hearing was defined in 1965 by the American Academy of Ophthalmology and Otolaryngology (AAOO) as any hearing loss up to 26 dB. This level of hearing loss is the point at which an individual begins to find it difficult to understand typical speech in a quiet environment. The AAOO guidelines around normal hearing have not changed since this cutoff was established and are supported by the American Medical Association and the American Academy of Audiology. Hearing deficits are categorized and defined in various ways, and there is variation in defining levels of hearing loss across countries, states, and health care providers. There are no widely agreed upon definitions for all types and levels of hearing loss. The American Speech-Language-Hearing Association (ASHA) categorizes and defines hearing loss primarily by type, degree, and configuration.103 Type of Hearing Loss (as defined by ASHA) ● Sensorineural hearing loss (SNHL) is the most common type of permanent hearing loss and “happens when there is damage to the inner ear (cochlea) or to the nerve pathways from the inner ear to the brain.” Audible speech may be unclear or sound muffled. This type of hearing loss can usually not be corrected with medical treatment or surgery. SNHL can be caused by: ○ Drugs that are toxic to hearing ○ Hearing loss that runs in the family (genetic or hereditary) ○ Head trauma ○ Malformation of the inner ear ○ Exposure to loud noise ● Conductive hearing loss “occurs when sound is not sent easily through the outer ear canal to the eardrum and the tiny bones (ossicles) of the middle ear.” Sounds will seem softer and less easy to hear. -
Audio Engineering Society Convention Paper Presented at the 113Th Convention 2002 October 5–8 Los Angeles, CA, USA
ALGAZI ET AL. HAT MODELS FOR SYNTHESIS Audio Engineering Society Convention Paper Presented at the 113th Convention 2002 October 5{8 Los Angeles, CA, USA This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. THE USE OF HEAD-AND-TORSO MODELS FOR IMPROVED SPATIAL SOUND SYNTHESIS V. Ralph Algazi1, Richard O. Duda1, and Dennis M. Thompson1 1CIPIC Interface Laboratory, University of California, Davis CA, 95616-8553, USA Correspondence should be addressed to Richard O. Duda ([email protected]) ABSTRACT This paper concerns the use of a simple head-and-torso model to correct de¯ciencies in the low-frequency behavior of experimentally measured head-related transfer functions (HRTFs). This so-called \snowman" model consists of a spherical head located above a spherical torso. In addition to providing improved low- frequency response for music reproduction, the model provides the major low-frequency localization cues, including cues for low-elevation as well as high-elevation sources. The model HRTF and the measured HRTF can be easily combined by using the phase response of the model at all frequencies and by \cross-fading" between the dB magnitude responses of the model and the measurements. -
A Unilateral Cochlear Implant for Tinnitus
REVIEW PAPER DOI: 10.5935/0946-5448.20180022 International Tinnitus Journal. 2018;22(2):128-132. A Unilateral Cochlear Implant for Tinnitus Mohamed Salah Elgandy1 Richard Tyler2,3 Camille Dunn2 Marlan Hansen2 Bruce Gantz2 Abstract In recent years a growing number of Patients with unilateral hearing loss have been undergoing cochlear implantation. We provide an overview of the efficacy of cochlear implants (CIs) to rehabilitate patients with unilateral deafness with regards to sound localization, speech recognition, and tinnitus. Although CI is not yet an FDA-approved treatment for unilateral deafness, several recent studies show improvements in speech understanding, sound localization, and tinnitus. Based on encouraging results and the unique ability to restore binaural sound processing, the benefits to many as an aid to their tinnitus, we argue that CIs should be offered as a treatment for unilateral deafness. Keywords: hearing loss, tinnitus, electrical stimulation, cochlear implants. 1Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, USA 3Department of Communication Sciences and Disorders, University of Iowa, Iowa City, USA Send correspondence to: Mohamed Salah Elgandy Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt. E-mail: [email protected] Paper submitted to the ITJ-EM (Editorial Manager System) on August 30, 2018; and accepted on September 10, 2018. International Tinnitus Journal, Vol. 22, No 2 (2018) 128 www.tinnitusjournal.com INTRODUCTION disturbances. It is important to note that the therapy in these situations is for depression and anxiety, not tinnitus. Unilateral hearing loss implies a profound sensori- neural hearing loss in one ear and no greater than a mild As with any bothersome, common disorder that lacks hearing loss in the opposite ear. -
A Giant Cholesteatoma of the Mastoid Extending Into the Foramen
Neurology International 2018; volume 10:7625 A giant cholesteatoma of the mastoid extending into Introduction Correspondence: Yuekang Zhang, Department of Neurosurgery, Post Graduate Training the foramen magnum: Cholesteatomas are benign, slowly pro- Centre, West China Hospital, Sichuan gressive lesions that are usually found in the University; 37 Guo Xue Xiang Road, A case report and review 1-5 temporal bone. They are epidermoid Chengdu, Sichuan 610041, P.R. China. of literature cysts of embryologic origin that result in Tel.: +86.18980601975 - Fax: +86.02885422490. progressive desquamation and trapping of E-mail: [email protected] Seidu A. Richard,1-3 Li Qiang,1 squamous epithelium behind an intact tym- panic membrane.6 They can be congenital Key words: Cholesteatoma, Case report, Zhi Gang Lan,1 Yuekang Zhang,1 or acquired.1,4,5 They can be classified into Dizziness, Epidermoid Cyst, Hearing loss, Chao You1 supralabyrinthine, infralabyrinthine, mas- Tinnitus. 1Department of Neurosurgery, West sive labyrinthine, infralabyrinthine-apical, Contributions: SAR conceived the project and and apical.1,4 They have the penchant for China Hospital, Sichuan University, designed the study; SAR, LQ and ZQL col- 2 China; Department of Immunology, the petrous apex, skull base, and internal lected patient’s data; YZ and CY provided Jiangsu University, China; 3Department auditory canal. Also, these lesions may technical assistance in the study; SAR pre- of Surgery, Volta Regional Hospital, Ho, infiltrate other vital soft tissue structures pared the illustration, analyzed data and wrote such as the sigmoid sinus, jugular vein and Ghana the paper. artery, and the cerebellopontine angle.1,4,5 Symptoms associated with cholesteatomas Conflict of interest: the authors declare no includes vertigo, tinnitus, otorrhea, and potential conflict of interest. -
Research Dissertation Title: the Pattern of Hearing Loss As Seen at the University of Benin Teaching Hospital, Benin City
RESEARCH DISSERTATION TITLE: THE PATTERN OF HEARING LOSS AS SEEN AT THE UNIVERSITY OF BENIN TEACHING HOSPITAL, BENIN CITY. BY DR. PAUL R O C ADOBAMEN ADDRESS: ENT UNIT, DEPARTMENT OF SURGERY, UBTH, BENIN CITY. A RESEARCH DISSERTATION, SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF FMCORL OF THE NATIONAL POST GRADUATE MEDICAL COLLEGE OF NIGERIA. MAY 2006. 1 CANDIDATE’S DECLARATION I, Dr. Adobamen P R O C hereby declare that: “The pattern of hearing loss as seen at the University of Benin Teaching Hospital, Benin City”; - Is an original prospective work done by me as the sole author and assistance received is duly acknowledged. - This work has not been previously submitted either in part or in full to any other College for a Fellowship nor has it been submitted elsewhere for publication. SIGNATURE------------------------ DATE------------------------------- 2 CERTIFICATION This study titled: “The pattern of hearing loss as seen at the University of Benin Teaching Hospital (UBTH), Benin City” was done by Dr. Adobamen P R O C under our supervision. We also supervised the writing of this dissertation. 1. NAME: Prof. F O Ogisi. FRCS, FICS, FWACS, FMCORL, DLO. STATUS: CONSULTANT OTORHINOLARYNGOLOGIST, HEAD AND NECK SURGEON, PROFESSOR. ADDRESS: DEPARTMENT OF SURGERY, U. B. T. H., BENIN CITY, NIGERIA. SIGNATURE:------------------------------------------------------ DATE:------------------------------------------------------------ 2. NAME: PROF B C EZEANOLUE. FMCORL, FWACS, FICS STATUS: CONSULTANT OTORHINOLARYNGOLOGIST, HEAD AND NECK SURGEON, ASSOCIATE. PROFESSOR. ADDRESS: DEPARTMENT OF OTOLARYNGOLOGY, U.N.T.H., ENUGU, NIGERIA. SIGNATURE:------------------------------------------------------ DATE:------------------------------------------------------------ 3 DEDICATION This book is dedicated to the bride of Jesus Christ; for their gallant stand for the Word of God. -
Hearing Loss and Auditory Disorders: Outside the Clinic
Hollea Ryan, Au.D., Ph.D., CCC-A Audiology Program Director, Samford University Bethany Wenger, Au.D., CCC-A Pediatric Audiologist, Vanderbilt University Disclaimers • Hollea Ryan is employed by Samford University and receives financial compensation for her work. No conflict of interest exists for this presentation. • Bethany Wenger is employed by Vanderbilt University Medical Center and receives financial compensation for her work. She has previously worked as a consultant for a hearing protection device company and was financially compensated. No conflict of interest exists for this presentation. Hearing Loss and Auditory Disorders:Hearing Loss Outside and Auditorythe Clinic Disorders: Outside the Clinic AGENDA • Unilateral Hearing Loss • Minimal (Bilateral) Hearing Loss • Auditory Disorders • Non-clinical Settings • Noise-Induced Hearing Loss Learning Objectives At the completion of this presentation, the participant will be able to: 1) Detail current research findings regarding children with minimal hearing loss and/or noise-induced hearing loss. 2) Identify non-academic settings in which children with hearing loss struggle. 3) Summarize various treatment options for children with hearing loss that improve communication, academic performance, and/or quality of life. What the Literature is Indicating about Minimal/Unilateral Hearing Loss Hearing Care Practices Before and After UNHS (Fitzpatrick, Whittingham, & Durieux-Smith, 2013; Fitzpatrick, Durieux-Smith, & Whittingham, 2010) • Retrospectively evaluated 20 years of history related