Behaviour of Mercury and Mercury Compounds at the Underground Disposal in Salt Formations and Their Potential Mobilisation by Saline Solutions
Total Page:16
File Type:pdf, Size:1020Kb
TEXTE 07 /2014 Behaviour of mercury and mercury compounds at the underground disposal in salt formations and their potential mobilisation by saline solutions | TEXTE | 07/2014 ENVIRONMENTAL RESEARCH OF THE FEDERAL MINISTRY OF THE ENVIRONMENT, NATURE CONSERVATION AND NUCLEAR SAFETY Project No. (FKZ) 3710 35 307 Report No. (UBA-FB) 001785 E Behaviour of mercury and mercury compounds at the underground disposal in salt formations and their potential mobilisation by saline solutions by Sven Hagemann Ute Oppermann Thomas Brasser Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig, Germany On behalf of the Federal Environment Agency (Germany) UMWELTBUNDESAMT This publication is only available online. It can be downloaded from https://www.umweltbundesamt.de/publikationen/behaviour-of- mercury-mercury-compounds-at-the along with a German version. The contents of this publication do not necessarily reflect the official opinions. ISSN 1862-4804 Study performed by: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Theodor-Heuss-Str. 4 38122 Braunschweig, Germany Study completed in: April 2013 Publisher: Federal Environment Agency (Umweltbundesamt) Wörlitzer Platz 1 06844 Dessau-Roßlau Germany Phone: +49-340-2103-0 Fax: +49-340-2103 2285 Email: [email protected] Internet: http://www.umweltbundesamt.de http://fuer-mensch-und-umwelt.de/ Edited by: Section III 1.5 Municipal Waste Management, Hazardous Wastes, Focal Point to the Basel Convention Dr. Jörg Friedrich, Dr. Joachim Wuttke Dessau-Roßlau, Januar 2014 Behaviour of mercury and mercury compounds Kurzbeschreibung In den kommenden 40 Jahren sind in der Europäischen Union etwa 11 000 t metallisches Quecksilber zu beseitigen, das in der Chlor-Alkali-Industrie nicht mehr genutzt wird oder bei der Nichteisenmetallproduktion sowie der Gasreinigung anfällt. Eine Option zur Beseitigung ist die dauerhafte Ablagerung in Untertagedeponien (UTD) im Salzgestein. Bislang war metalli- sches Quecksilber als Flüssigkeit von einer Ablagerung in UTD ausgeschlossen. Vor einer Zulassung ist es notwendig, die besonderen Herausforderungen zu untersuchen, die sich aus den spezifischen Eigenschaften des metallischen Quecksilbers (flüssiger Zustand, Bil- dung toxischer Gase, aufwendige Reinigung kontaminierter Flächen) für die Entsorgungspraxis ergeben. Auf Basis des heutigen Kenntnisstandes ist eine sichere Dauerlagerung von metallischem Quecksilber in Untertagedeponien im Salzgestein grundsätzlich machbar. Im Normalbetrieb der UTD ist nicht mit einer Beeinträchtigung der Betriebssicherheit zu rechnen. Es sind jedoch zusätzliche technische und organisatorische Maßnahmen zu treffen, um das Risiko einer Frei- setzung flüssigen und gasförmigen Quecksilbers im Zuge von Unfällen zu minimieren. Eine Beeinträchtigung der Betriebssicherheit sollte nicht zu besorgen sein. Empfohlene Maßnahmen beinhalten eine für die Betriebsphase störfallsichere Auslegung der Transport- und Lagerbehäl- ter und eine Auslagerung der stofflichen Eingangskontrolle zum Abfallerzeuger. Empfohlen werden zudem eine kampagnenweise Einlagerung von Behältern und der unverzügliche Ver- schluss von Einlagerungsabschnitten. Nach Verschluss der gesamten Untertagedeponie gehen bei planmäßiger Entwicklung des UTD-Gesamtsystems vom abgelagerten Quecksilber keine spe- zifischen Umweltrisiken aus. Im hypothetischen Fall eines Lösungszuflusses wirkt die niedrige Löslichkeit reinen metallischen Quecksilbers als innere Barriere. Abstract Within the next 40 years, in the European Union approximately 11,000 t of metallic mercury has to be disposed that is no longer used in the chlor-alkali industry or is gained from non- ferrous metal production or the cleaning of natural gas. One disposal option is permanent storage in underground storage sites in salt rock. As a liquid, metallic mercury has been ex- cluded from this disposal option so far. Prior to a permit, it is necessary to investigate the par- ticular challenges for the disposal practice that originate from the specific properties of me- tallic mercury (liquid state, formation of toxic gases, laborious clean-up of contaminated areas). On the base of present knowledge a safe permanent storage of metallic mercury in under- ground storage sites is principally feasible. Under the conditions of a normal operation it is expected that the operational safety is not affected. However, additional technical and organi- sational measures have to be taken, in order to minimize the risk of a release of liquid or gaseous mercury in case of an accident. There should be no reason to fear a deterioration of operational safety. Recommended measures include constructing the transport and storage containers in a way that they withstand hazardous incidents, shifting the material acceptance control to the waste producer, emplacement of containers in distinct campaigns with subse- quent closure of disposal sectors. After sealing the complete underground storage facility and assuming a normal development of the integral system of the underground storage site, disposed mercury does not pose a specific environmental risk. In the hypothetical case of a fluid intrusion, the low solubility of pure metallic mercury represents an inner barrier. Behaviour of mercury and mercury compounds Table of Contents 1 Introduction ..................................................................................................................................... 1 1.1 The disposal of surplus mercury ............................................................................................ 1 1.2 Objective: Requirements for the permanent storage of mercury underground ............. 2 1.3 Methodology ............................................................................................................................ 3 2 Origin, quantities and disposal of mercury ................................................................................. 4 2.1 Origin and quantities of the mercury to be disposed of in the EU ................................... 4 2.2 Disposal of metallic mercury.................................................................................................. 5 2.3 Disposal of stabilised mercury ............................................................................................... 5 3 Specific properties of mercury ...................................................................................................... 8 3.1 Toxicity and exposure ............................................................................................................. 8 3.2 Specific properties of elemental mercury............................................................................. 9 3.3 Specific properties of stabilised mercury ............................................................................10 4 Long-term chemical behaviour of mercury, mercury compounds and mercury waste ..............................................................................................................................................13 4.1 Solution types which may occur in salt formations ..........................................................13 4.2 Experimental methods for determining the solubility of mercury and mercury compounds in saline solutions .............................................................................................15 4.2.1 Solubility of elemental mercury in saline solutions .....................................................15 4.2.2 Potential contaminants in metallic mercury ................................................................17 4.2.3 Solubility of mercury oxide in saline solutions.............................................................18 4.2.4 Solubility of mercury sulphide in saline solutions .......................................................18 4.2.5 Determining concentration of dissolved mercury after contact of selected mercury waste with saline solutions .............................................................................19 4.3 Chemical stability of elemental mercury and mercury sulphide in contact with salt rock, air and aqueous solutions ....................................................................................20 4.3.1 Stability of elemental mercury in contact with atmospheric oxygen........................20 4.3.2 Stability of elemental mercury in contact with salt rock ............................................20 4.3.3 Stability of elemental mercury in contact with aqueous solutions ............................21 4.3.4 Stability of mercury sulphide compared with saline solutions and atmospheric oxygen ........................................................................................................24 4.3.5 Thermal stability of mercury sulphide ..........................................................................26 4.4 Solubility of mercury and mercury compounds in saline solutions................................26 I Behaviour of mercury and mercury compounds 4.4.1 Solubility of elemental mercury in water and saline solutions ..................................27 4.4.2 Solubility of mercury oxide in saline solutions.............................................................29 4.4.3 Solubility of mercury sulphide in saline solutions .......................................................31 4.4.4 Mobilisation of mercury from mercury waste ..............................................................33 4.4.5 Summary evaluation of the solubility experiments .....................................................35