Reactor Physics Activities in Nea Member Countries

Total Page:16

File Type:pdf, Size:1020Kb

Reactor Physics Activities in Nea Member Countries GENERAL DISTRI13UTION '4 NEA COMMITTEE ON REACTOR PHYSICS & REACTOR PHYSICS ACTIVITIES IN NEA MEMBER COUNTRIES October 1982-September 1983 NEACRP-L-266 OECD NUCLEAR ENERGY AGENCY 38 boulevard Suchet 75016 Paris NEA COMMITTEE ON REACTOR PHYSICS REACTOR PHYSICS ACTIVITIES IN NEA MEMBER COUNTRIES October 1982 - September 1983 OECD NUCLEAR ENERGY AGENCY 38 Boulevard Suchet, 75016 Paris 17040 Copyright OECD, 1984 REACTOR PHYSICS ACTIVITIES IN NEA MEMBER COUNTRIES This document is a compilation of national activity reports presented at the Twenty-Sixth Meeting of the NEA Committee on Reactor Physics. held at Oak Ridge National Laboratory. Tennessee. U.S.A., from 17th to 21st October 1983 . Australia ...................................... 1 Austria ........................................ 4 Belgium ........................................ 7 Canada ........................................ 13 Denmark ........................................ 18 Finland ........................................ 27 France ........................................ 35 F.R. Germany ................................... 48 Italy ........................................ 70 Japan ........................................ 77 Netherlands .................................... 94 Norway ........................................ 102 Spain ........................................ 109 Sweden ........................................ 121 Switzerland .................................... 129 e United Kingdom ................................. 138 United States of America ....................... 150 . JRC-Ispra ..................................... 157 AUSTRALIA REACTOR PHYSICS ACTIVITIES IN AUSTRALIA (October 1982 - September 1983) D.B. McCulloch Australian Atomic Energy Commission Research Establishment . Lucas Heights Research Laboratories, Sutherland 2232, Australia. 1. METHODS OF CALCULATION t e- 1.1 AUS Modular Scheme Only limited further development of AUS has been undertaken this year. The 3-dimensional neutron diffusion module POW-3D has been completed by the inclusion of perturbation routines; a 1-dimensional diffusion module AUS100, suitable for calculations of spatially de- pendent group-condensation spectra, has been added to the scheme to complement POW-3D; bilinear weighting has been included in the MIRANDA cross-section preparation module. 1.2 Monte Carlo Point Reaction Rate Estimation The use of next flight estimation of point reaction rates in calculations with the Monte Carlo code MORSE has been investigated with particular reference to a typical fusion blanket experiment of a central source in a metre cube of lithium carbonate. The method of Iida and Seki (1), which involves importance sampling to determine whether a distant collision should be used, was found to give substantially improved results. The infinite variance problem for collisions very near a detector is eliminated by analytically averaging the contribution for collisions within a certain radius of the detector. It was also found advantageous to select the group into which the neutron was scattered, rather than t include the contribution of all possible groups to the next flight estimation. 2. FUSION REPXTOR BLANKET NEUTRONICS 2.1 Validation of Group Cross-section Library Fusion neutronics calculations at the AAEC are based on group cross-section data from AUS.ENDF200G which is a 200 neutron, 37 .. i photon group library derived from ENDF/B -E. To validate this library and the chanqes to AUS system modules which were required to include photon and kerma factor data, a number of comparisons have been made with published calculations of conceptual fusion reactor blanket designs. The STARFIRE study was chasm Ear the ~najor investigation, 'L'he published results include tritium production levels and energy releases for a large number of 1D scoping calculations using ENDFIB ?'7- data. Though reasonable agreement (~4%)with total energy release results was obtained, an unexpected difference of about 7% was ob- tained for tritium production. The comparison was therefore extended t.o three other studies for which published tritium production results using ENDE'/B -- were available, vix. the CTR standard blanket, the European Economic Com- munity blanket concept for INTOR, and DEMO. Agreement to about 1% was obtained for these systems. This attempt to validate AUS system results by comparison with published design studies is considered less than satisfactory, no single self-consistent set of results for a comprehensive rangebecau"e. of parameters appears to be available. An international benchmark calcu- lation enabling the comparison of many aspects of fusion blanket neutronics, particularly those not amenabk to direct experimental verification, would be very useful. 3. RESEARCH REACTOR (HIFAR) NEUTRONICS The computational models of HIFAR previously developed for use with the AUS scheme have been applied to routine HIFAR reactivity and burn-up calculations in an indirect manner by extracting flux factors and reactivity coefficients for use in a simple fuel and reactivity accounting program, HIFUEL. The HIFUEL approach is similar to the semi-empirical method used for operational purposes over many years via the HIBURN program , but uses calculated instead of measured parameters. This has the(2' advantage of replacing experimentally based data (e.g. flux depres- . sion factors, reactivity coefficients) from a number of sources, which are often difficult to reconcile with confidence, with a single self- consistent data set. It also allows comparison of routine and more complex, special-purpose HIFAR calculations in a consistent manner. HIPUEL calculations were run for a sequence of BIFAR operating programs spanning several years, and the results compared with the corresponding operational data. HIFUEL consistently predicted react- ivity changes to better than 0.5% in keff, and fluxes to better than 10%. REFERENCES 1. Iida, H. and Seki, Y. (1960). Reduction of computational time for point detector estimator in Monte Carlo transport codes. NSE -74, p213. 2. McCulloch, D.B. and Trimble G.D. (1969). A method of estimating fuel burn-up and higher isotope production in the reactor HIFAR. AAEC/TMSO8. AUSTRIA -4- REACTOR PHYSICS ACTIVITXES IN AUSTRIA October 1982 - September 1983 compiled by F. Putz 1.1 Reactor Computations An additional shut down system consisting of small boronated shut down spheres and provided for future HTRs with pebble-bed cores has been studied at ITP/TU Graz (Institut fur theoretische Physik der Technischen Universit%t Graz) jointly with the Institute of Reactor Development of KFA Jalich (FRG). For the neutronics analysis a problan dependent . 60 group cross section library had been developed. In order to take into account the selfshielding of the shut down spheres it was necessary to develop various cell models and to investigate the inEluence of the geometry underlying the cell models. Criticality calculations using the code CITATION-2D are in good agreement with experimental results gained from ex- periments performed on multisphere configurations at the Siemens-Argonaut reactor of TU Graz. 1.2 Transport Theory At ITP/U Graz (Institut fur theoretische PhysSk der Universitat Graz) a study is in progress of the passage of neutron pulses through stratified media using the method of multiple collision probabilities. Reactor Kinetics Based on the theory of the well known TWIGLE-code a reactor kinetics code is being developed at bFZS (8sterreichisches Forschungszentrum Seibersdorf) including an improved hydraulics model. Application of a coarse mesh rebalancing method leads t0.a reduction of computer time. An exponential transform reduces the number of time steps, the increments of which are calculated by a predictor-corrector method. The code is provided for the simulation of reactivity transients. Nuclear Data The existing data bank of all available neutron-nuclei scattering lengths has been updated at A1 (Atominstitut der rsterreichischen UniversitSten, Wien) by including the recent values from the literature. Altogether 960 values for the various elements and isotopes have been collected and referred. EXPERTMENTAL STUDIES C 2.1 Burn-up Determination An important activity at A1 in the preceeding year was the inter-comparison of non-destructive techniques to determine spent fuel burn-up. Application of ionization and fission chambers has been compared with the use of thermoluminescence dosimeters (TLD) and solid state nuclear track detectors (SSTD). After careful selection of optimal TLDs and SSTDs and of various types of con- verter foils such as depleted, natural or enriched uranium these detectors have been exposed in the first stage to spent TRIGA fuel elements and in a second stage to spent fuel elements from the Halden boiling water reactor. It could be shown that TLDs and SSTDs offer some considerable benefits compared to ionization and fission chambers such as easy trans- portation and handling, simple application, parallel exposure to many fuel assemblies at the same time and low costs. In no way these two detector types may replace chambers but they can be used as additional back-up methods in case that routine measurements show deviations from the expected burn-up value. 2.2 Reactivity Measurement Measurements of the subcritical reactivity have been carried out at the Siemens-Argonaut reactor of TU Graz using the inverse kinetics method and the source jerk method respectively. The results gained with these two methods agree satisfactorily. REACTOR PHYSICS ACTIVITIES IN BELGIUM
Recommended publications
  • Safeguards at Research Reactors: Current Practices, Future Directions
    FEATURES Safeguards at research reactors: Current practices, future directions Some new verification measures are being introduced to improve the efficiency and the effectiveness of the Agency's safeguards by Giancarlo /approximately 180 research reactors and crit- immersed in a large pool of water that provides Zuccaro-Labellarte ical assemblies currently are under IAEA safe- both cooling and neutron moderation. The fuel and guards. The vast majority of the research reac- assemblies in the core of a swimming pool reac- Robert Fagerholm tors operate at relatively low power levels (10 tor are normally visible and accessible for safe- megawatts-thermal or lower) and the critical guards measurements. assemblies at virtually zero power.* From a Other types of research reactors operate at safeguards standpoint, this is important since a higher power levels (exceeding 10 megawatts- reactor's power level is a determining factor of thermal). They need more powerful heat its capability to produce plutonium. Along with removal systems and are therefore normally high-enriched uranium (HEU) and uranium- enclosed in core vessels and equipped with 233, plutonium is considered a "direct use" coolant pumps and heat exchangers. The fuel material which could be diverted for the pro- elements in the reactor core at these installa- duction of nuclear weapons. tions are usually not visible or accessible for In this article, the IAEA's safeguards safeguards measurements. implementation at research reactors is Research reactors are widely used for scien- addressed, including aspects related to diver- tific investigations and various applications. sion and clandestine production scenarios and Neutrons produced by research reactors provide main verification activities.
    [Show full text]
  • 18 IGORR Conference IAEA Workshop on Safety Reassessment
    18th IGORR Conference and IAEA Workshop 18th IGORR Conference and IAEA Workshop on Safety Reassessment of Research Reactors in Light of the Lessons Learned from the Fukushima Daiichi Accident, J7-TR-54790 International Conference Centre Sydney Darling Harbour, Sydney, Australia Sunday 3 – Thursday 7 December 2017 Sunday 3 December 17:00 Registration Reception Drinks and canapés Register for the Conference 18th IGORR Conference and IAEA Workshop Monday 4 December 08:20 Opening Session (Room C4.1) Chair: ANSTO Welcome to Country Welcome from ANSTO, IGORR & IAEA 09:00 General Session (Room C4.1) Chairs: David Vittorio & Gilles Bignan Andrea Borio di Tigliole: IAEA activities to support sustainable operation of and access to research reactors Gilles Bignan: The CEA scientific and technical offer as a designated ICERR by the IAEA: First feedback with the prime Affiliates Alexander Tuzov: RIAR as IAEA ICERR: Pilot technical cooperation projects and future prospects Sean O’Kelly: The first 50 years of operation of the ATR at the Idaho National Laboratory Khalid Almarri: A qualitative study for establishing the conditions for the successful implementation of public private partnerships in research reactor project in newcomer contries 10:40 Morning Tea Break (Room C4.4) 11:00 IAEA Workshop (Room C4.1) Chair: David Sears David Sears: IAEA Activities on the safety of Research Reactors Alexander Sapozhnikov: New safety requirements addressing feedback from the Fukushima Daiichi accident Mark Summerfield: Some thoughts on operator intervention arising
    [Show full text]
  • Engineering Science Ph.D. in Nuclear Engineering / Nuclear Science and Technology Syllabus for Written Test Institute for Plas
    Engineering Science Ph.D. in Nuclear Engineering / Nuclear Science and Technology Syllabus for Written Test Institute for Plasma Research 2019 1. BASIC CONCEPTS IN NUCLEAR PHYSICS: Nuclear constituents – charge, mass, shape, and size of nucleus, Binding energy, packing fraction, nuclear magnetic moment, saturation and short range nuclear forces, Radioactivity – Laws of radioactive decay, half life, mean life, specific activity, partial radioactive decay, successive disintegration, α decay: Barrier penetration, β decay: Fermi theory, selection rules, parity non-conservation, γ decay of excited states. Nuclear models – single particle shell model, evidence and limitations of shell model, liquid drop model : Introduction, assumptions, semi-empirical mass formula 2. NUCLEAR DETECTORS, ACCELERATORS AND REACTORS Types of detectors, Geiger-Mueller counter, Scintillation counter, classification of accelerators, Cyclotron, Betatron. Nuclear Reactor – Basic principle, classification, constituent parts, Heterogeneous reactor, Swimming pool reactor, Breeder reactor, Heavy water cooled and moderated CANDU type reactors, Gas cooled reactors. General considerations about reactor physics, engineering requirements- Description of the neutron distribution: fluxes, currents, and sources-Nuclear data, cross sections, and reaction rates- Basic scheme of nuclear system modeling methods-Deterministic modeling of nuclear systems-Neutron balance (conservation) equations. Spent fuel - light water reactor, light water reactor MOX, fast reactor MOX Radiotoxicity
    [Show full text]
  • Research Reactors: Addressing Challenges and Opportunities To
    3.57 mm spine Research Reactors: Addressing Challenges and Opportunities to Ensure Effectiveness and Sustainability Summary of an International Conference Buenos Aires, Argentina, 25–29 November 2019 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA RESEARCH REACTORS: ADDRESSING CHALLENGES AND OPPORTUNITIES TO ENSURE EFFECTIVENESS AND SUSTAINABILITY The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. PROCEEDINGS SERIES RESEARCH REACTORS: ADDRESSING CHALLENGES AND OPPORTUNITIES TO ENSURE EFFECTIVENESS AND SUSTAINABILITY SUMMARY OF AN INTERNATIONAL CONFERENCE ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HOSTED BY THE GOVERNMENT OF ARGENTINA THROUGH THE NATIONAL ATOMIC ENERGY COMMISSION AND HELD IN BUENOS AIRES, 25–29 NOVEMBER 2019 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2020 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form
    [Show full text]
  • Progress Report for Period Ending December 1961 Department of Reactor Physics AKTIEBOLAGET ATOMENERGI
    AE-79 Progress Report for Period Ending Cs December 1961 Department of Reactor Physics AKTIEBOLAGET ATOMENERGI STOCKHOLM SWEDEN 1962 ÅE-79 AKTIEBOLAGET ATOMENERGI Department for Reactor Physics Foreword; This is the second Progress Report from the Department for Reactor Physics of Aktiebolaget Atomenergi, which is issued for the information of institutions and persons interested in the progress of the work. In this report the activities of the General Physics Section have been included, since this section nowadays belongs to the department. This is merely an informal progress report, and the results and data presented must be taken as preliminary. Final results will be sub- mitted for publication either in the regular technical journals or as monographs in the series AE-reports. B Tell Editor Printed and distributed in August 1962 2. LIST OF CONTENTS Page Foreword Plasma Physics; Erik Karlson 5 Experimental Plasma Physics 5 - Rotating Plasma 5 - Plasma Acceleration 6 - Plasma Resonance 6 Theoretical Reactor Physics Section: Bengt Pershagen 8 Project Calculations 8 - R3-Ågesta • 8 - R4-Mar viken 9 - PHWR 10 - Boiling and Superheating Reactor Design Study 10 Research and Development 11 - Lattice Calculation Methods 11 - Fast Neutron Spectrum and Group Constants 11 - Heterogeneous Methods 12 - Fuel Cycle Code 13 - Control Rod Theory 13 - Reactor Kinetics and Stability 13 - Fast Reactor Physics 14 - Neutron Slowing-down and Thermalization 15 Experimental Reactor Physics Section; Rolf Pauli & Eric Hellstrand 18 Reactor Physics I 18 - Experimental Facilities 18 - Substitution Technique 19 - R3 Fuel Assemblies 20 - Fuel for the R4 Project 20 - Uniform UO? Lattices 21 - Fuel for the HBWR (Halden Reactor) 21 - Fuel Exchanged with the SRL 21 - Miscellaneous 22 3.
    [Show full text]
  • Atomic Energy of Canada Limited
    Sudan Academy of Sciences Atomic Energy Council ^ rr* /■ i A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Nuclear Science By Hisham Mirghani Dirar B.Sc. University of Khartoum. 1999 Supervisor Prof. Adam Sam June 2012 Sudan Academy of Sciences Atomic Energy Research Council Examination Committee h n \ i i Title Name Signature i A s 1 4 V ■■ , \ r i External Examiner Dr.Siddig Abdalla Talha 1 j - ! , i i S 1 i Supervisor Prof.Adam Khatir Sam . S- • T i 1 -1 Date of Examination: 27lh September, 2012 Dedication I dedicate this thesis to my family, fo r their constant support \ S and unconditional >!• * i love. I Acknowledgem ents First of all I would like to thank God for the grace strength provided to me for completing this thesis. I take immense pleasure in thanking P r o f . A d a m S a m from Sudan Atomic Energy Commission (SAEC), who has chosen the topic, for having permitted me to perform my master’s thesis. P r o f . S a m is a good advisor and one of the smartest people I know. I am also very grateful to D r.Farouk H abbani from The Department of Physics in University of Khartoum for his scientific advice and knowledge and many insightful discussions and suggestions. Also, a special thanks to M r . R a n i O s a m a from (SAEC) for his valuable information. Finally, I would like to express my appreciation and gratitude to my family, especially my parents, for their support, encouragement and advice during my studies and during the realization of this thesis.
    [Show full text]
  • Manual for Reactor Produced Radioisotopes
    IAEA-TECDOC-1340 Manual for reactor produced radioisotopes January 2003 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria MANUAL FOR REACTOR PRODUCED RADIOISOTOPES IAEA, VIENNA, 2003 IAEA-TECDOC-1340 ISBN 92–0–101103–2 ISSN 1011–4289 © IAEA, 2003 Printed by the IAEA in Austria January 2003 FOREWORD Radioisotopes find extensive applications in several fields including medicine, industry, agriculture and research. Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programmes. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. Specifications for final products and testing procedures for ensuring quality are also an essential part of a radioisotope production programme. The International Atomic Energy Agency (IAEA) has compiled and published such information before for the benefit of laboratories of Member States. The first compilation, entitled Manual of Radioisotope Production, was published in 1966 (Technical Reports Series No. 63). A more elaborate and comprehensive compilation, entitled Radioisotope Production and Quality Control, was published in 1971 (Technical Reports Series No. 128). Both served as useful reference sources for scientists working in radioisotope production worldwide.
    [Show full text]
  • Oak Ridge Na Tional Labora Tory Re Vie W , V Ol. 51, No. 3, 2018 • 75 Years of Scienc E and T Echnology
    Oak Ridge National Laboratory Review, Vol. 51, No. 3, 2018 • 75 Years of Science and Technology Contents Editorial Infographic 1 . Science with a mission 34 . 11 ORNL neutron achievements The wartime lab New challenges/ORNL diversifies 2 . The top-secret laboratory 36 . New challenges 7 . Wigner’s influence at ORNL 39 . Where no one has gone before 9 . Enrico Fermi and the Chicago Pile 41 . Plugged into battery safety . Zachary Taylor’s deadly snack . ORNL and the University 47 11 of Chicago 49 . Pioneering mass spectrometry 13 . Making the most of neutrons 51 . Beads on a string: Discovering the 15 . Radiation and you nucleosome Infographic Infographic 18 . ORNL’s 13 nuclear reactors . 14 achievements in leadership 52 computing at ORNL Peacetime progress/nuclear lab 20 . A nuclear lab in peacetime ORNL now . 21 . Weinberg saves ORNL 54 ORNL in the 21st century and beyond . Oak Ridge spreads the nuclear 57 The growth of computing at ORNL 23 knowledge . ORNL hosts VIP visitors 63 . A successful project never gets off 67 . Materials for nuclear environments 25 the ground 71. Neutrons and quantum materials A swimming pool reactor in . UT-ORNL partnerships benefit 29 Geneva . 75 students 31 . The house the Russells built . Skilled tradespeople keep ORNL 77 running . Microscopy and computing 79 for futuristic materials . 81 Materials for the world . Billion-dollar impacts from ORNL 83 innovations On the Cover Pioneering ORNL geneticist Liane Russell. DOE photo by Ed Westcott Science with a mission his special edition marks the 75th birthday of Oak Ridge National Laboratory, providing a survey of the lab’s origin T in a time of global crisis, its evolution in the decades that followed, and its leadership today.
    [Show full text]
  • Nuclear Fuel Supplies
    The establishment near Juelich will have two research reactors of British design, one of them a 5 MW (thermal) swimming pool reactor of the Merlin type, probably to be completed by 1960/61, and the other a 10 MW (thermal) heavy water reactor of the Dido type. At this centre also, a number of labora­ tories and other facilities are under construction or being planned. Of the research reactors already in operation, a 1 MW (thermal) swimming pool reactor has been functioning at Garching, near Munich, since October 1957. At Frankfurt University, a 50 kW (thermal) water boiling reactor has been in operation since January 1958. A similar reactor has been operating at the Hahn-Meitner Institute for Nuclear Research in Berlin since July 1958. A fourth reactor, of the swimming pool type with a thermal output of 5 MW, went critical at Geesthacht-Tesperhude, near Ham­ burg, in October 1958. These four research reac­ tors were supplied by US firms. Finally, a 10 kW Research establishment near Karlsruhe. In the back­ Argonaut type reactor, located at Garching, near ground, towards the left, is the Reactor FR 2 Munich, became critical in June 1959; this is the first reactor to be built, on the basis of American plans, exclusively by scientists and technicians of have been concluded with Canada, the United King­ the Federal Republic. dom and the United States. Uranium prospecting within the country has so far resulted in the discov­ For reactor fuel, the Federal Republic of Ger­ ery of only one small deposit. An experimental fa­ many has to depend almost entirely on uranium sup­ cility for ore dressing started functioning late last plies from abroad.
    [Show full text]
  • Problems Concerned in Fuel Design of Carr
    PROBLEMS CONCERNED IN FUEL DESIGN OF CARR Yuan Luzheng Kang Yalun China Institute of Atomic Energy P. O. Box 275 (105), Beijing 102413, P. R. of China Tel. 86-10-69358140 Fax. 86-10-69357008 E-mail : [email protected] Presented at the 1998 International Meeting on Reduced Enrichment for Research and Test Reactors October 18-23, 1998 São Paulo, Brazil PROBLEMS CONCERNED IN FUEL DESIGN OF CARR Yuan Luzheng Kang Yalun China Institute of Atomic Energy P. O. Box 275 (105), Beijing 102413, P. R. of China Tel. 86-10-69358140 Fax. 86-10-69357008 E-mail : [email protected] Abstract For a multipurpose research rector with rather high performance like CARR, to lower the fuel meat temperature, to control the oxide layer growth and to ensure the structural stability of fuel assembly are the main problems to be solved in the fuel design and briefly described in this paper. INTRODUCTION The existing two research reactors in China Institute of Atomic Energy (CIAE), Heavy Water Research Reactor (HWRR) and Swimming Pool Reactor (SPR) were built, respectively, in 1958 and 1964 and now still in operation. Although some modification and reconstruction work and recently the renovation job for these two reactors were performed, they are both in extended service and facing the aging problem. It is expected that they will be out of service at about 2000. So, China has planned to design and build a new research reactor at CIAE. In consideration of the need of increasing requirements in science and technology applications, the scheduled research reactor should be one with higher preformance than the existing two old reactors in order to match the R & D tasks related to the coming 21st century, such as high enough neutron flux available for the neutron scattering experiments, updated engineered safety features for research reactors, etc.
    [Show full text]
  • Glossary of Nuclear Terms
    BURGES SALMON LLP Glossary of Nuclear Terms July 2014 Edited by Gareth Davies Editor: Gareth Davies, Burges Salmon LLP Co-Editors: Ashley Crathern, Burges Salmon LLP Sarah Raby, Burges Salmon LLP Peer Reviewers: Ian Bonnett, AREVA Adrian Bull, National Nuclear Laboratory Samantha Dancy, Nuclear Decommissioning Authority Anna Ellis, Frazer-Nash Consultancy Neil Foreman, Centronic Ltd Dr Justin Goldberg, Jacobs Engineering (UK) Limited Peter Haslam, Nuclear Industry Association Allison Hunt, National Skills Academy for Nuclear Stuart Hunt, EDF Energy Terry Kelly, Cavendish Nuclear Mark Liddiard, HR Wallingford Jean Llewellyn, National Skills Academy for Nuclear Melanie Sachar, EDF Energy Dr Tim Stone, former Expert Chair, Office for Nuclear Development Ian Truman, EDF Energy Version Date: July 2014 © 2014 Burges Salmon LLP www.burges-salmon.com All rights reserved. Any use or reproduction of this Glossary, whether in whole or part, must clearly attribute authorship and acknowledge that © remains with Burges Salmon LLP. The moral rights of Burges Salmon LLP have been asserted in accordance with the Copyright, Designs and Patents Act 1988. Disclaimer: This Glossary is intended as a general guide only. The information and opinions which it contains are not intended to be a comprehensive study, nor to provide legal advice, and should not be treated as a substitute for legal advice containing particular situations. Legal advice should always be sought before taking any action based on the information contained in this Glossary. The publishers and the peer reviewers bear no responsibility for any errors or omissions contained herein. Foreword ‘’I very much welcome the initiative by Burges Salmon to create this long-needed standard Glossary of terms which will be of use to people across the nuclear industry – technical and non-technical alike.
    [Show full text]
  • "Handbook of Acronyms & Initialisms."
    NUREG-0544 A HANDBOOK OF ACRONYMS AND INITIALISMS p* "muq % 5 ..... Office of Administration U. S. Nuclear Regulatory Commission '9 05 140 f73 NUREG4544 A HANDBOOK OF ACRONYMS AND INITIALISMS Manuscript Completed: March 1979 Date Published: March 1979 Division of Technical Information and Document Control Office of Administration U. S. Nuclear Regulatory Commission Washington, D.C. 20555 PREFACE This " Handbook of Acronyms and Initialisms" is a dictionary of acro- nyms, initialisms and similar condensed forms observed in use in the nuclear industry. It was compiled to serve as a source for learning the meaning of undefined acronyms found in the literature. The use of these acronyms in NRC documents is neither recommended or condemned, and, similarly, the accuracy and completeness of this document is not assured. If you use these or similar condensed forms in your writing we strongly recommend the practice of writing out the condensed form first and following it with the acronym or initialism in parentheses; for example, U.S. Nuclear Regulatory Commission (NRC). After the ini- tial writing out of the full name, the acronym may be used by itself. For the purposes of this document the following definitions apply: Acronym - a pronounceable term formed from the initial letters of a compound expression, e.g. NASA (National Aeronautics andSpaceAdministration)orRem({oentgen[quivalent man). Initialism - a term, not pronounceable, formed from the initial letters of a compound expression, e.g. CIA (Central Intelligence Agency) or ac (alternating current). Comments, criticisms or suggestions regarding this publication are en- couraged. In so far as possible, we would like this document to be a valuable part of your reference material.
    [Show full text]